• Title/Summary/Keyword: unconfined compression

Search Result 281, Processing Time 0.026 seconds

Mix design of CSG method (CSG 공법적용을 위한 배합설계기법)

  • Kim, Ki-Young;Jeon, Je-Sung;Cho, Sung-Eun;Lee, Jong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.293-301
    • /
    • 2005
  • The CSG(Cemented Sand and Gravel) method is construction technique using as raw materials earth and gravel generated from a local construction site, mixing them with cement and rolling with vibration rollers. Recently, The use of this method for cofferdam and large dam is gradually increasing in Japan. The purpose of an CSG mix design is to develop project specific properties to meet the structure design requirements. But uniform mix design of CSG method has not yet been established. The experience of practitioners from the geotechnical and concrete disciplines has given rise to two genernal approaches to mix design for CSG. This paper reports the concept of how to set the mix design according to modified Proctor compaction test process and the test results on properties such as compaction, compressive strength and modulus of elasticity that obtained by unconfined compression test.

  • PDF

Stabilized soil incorporating combinations of rice husk ash, pond ash and cement

  • Gupta, Deepak;Kumar, Arvind
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.85-109
    • /
    • 2017
  • The paper presents the laboratory study of clayey soil stabilized with Pond ash (PA), Rice husk ash (RHA), cement and their combination used as stabilizers to develop and evaluate the performance of clayey soil. The effect of stabilizer types and dosage on fresh and mechanical properties is evaluated through compaction tests, unconfined compressive strength tests (UCS) and Split tensile strength tests (STS) performed on raw and stabilized soil. In addition SEM (scanning electron microscopy) and XRD (X-ray diffraction) tests were carried out on certain samples in order to study the surface morphological characteristics and hydraulic compounds, which were formed. Specimens were cured for 7, 14 and 28 days after which they were tested for unconfined compression tests and split tensile strength tests. The moisture and density curves indicate that addition of RHA and pond ash results in an increase in optimum moisture content (OMC) and decrease in maximum dry density (MDD). The replacement of clay with 40% PA, 10% RHA and 4% cement increased the strength (UCS and STS) of overall mix in comparison to the mixes where PA and RHA were used individually with cement. The improvement of 336% and 303% in UCS and STS respectively has been achieved with reference to clay only. Developed stabilized soil mixtures have shown satisfactory strength and can be used for low-cost construction to build road infrastructures.

Soil water characteristic curve and improvement in lime treated expansive soil

  • Al-Mahbashi, Ahmed M.;Elkady, Tamer Y.;Alrefeai, Talal O.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.687-706
    • /
    • 2015
  • Methods commonly used to evaluate the improvement of lime-treated expansive soil include swelling characteristics and unconfined compressive strength. In the field, lime-treated expansive soils are in compacted unsaturated state. Soil water characteristic curves (SWCCs) represent a key parameter to interpret and describe the behavior of unsaturated expansive soil. This paper investigates the use of SWCC as a technique to evaluate improvements acquired by expansive soil after lime treatment. Three different lime contents were considered 2%, 4% and 6% by dry weight of clay. Series of tests were performed to determine the SWCC for the different lime content under curing periods of 7 and 28 day. Correlations between key features of the soil water characteristic curves of lime treated expansive soils and basic engineering behavior such as swelling characteristics and unconfined compression strength were established. Test results revealed that initial slope ($S_1$), saturated water content ($w_{sat}$), and air entry value (AEV) play an important role in reflecting improvement in engineering behavior achieved by lime treatment.

Influence of freeze-thaw on strength of clayey soil stabilized with lime and perlite

  • Yilmaz, Fatih;Fidan, Duygu
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.301-306
    • /
    • 2018
  • Stabilization of clayey soil has been studied from past to present by mixing different additives to the soil to increase its strength and durability. In recent years, there has been an increasing interest in stabilization of soils with natural pozzolans. Despite this, very few studies have investigated the impact of pozzolanic additives under freeze-thaw cycling. This paper presents the results of an experimental research study on the durability behavior of clayey soils treated with lime and perlite. For this purpose, soil was stabilized with 6% lime content by weight of dry soil (optimum lime ratio of the the soil), perlite was mixed with it in 0%, 5%, 10%, 20%, 25% and 30% proportions. Test specimens were compacted in the laboratory and cured for 7, 28 and 84 days, after which they were tested for unconfined compression tests. In addition to this, they were subjected to 12 closed system freeze-thaw cycles after curing for 28 days. The results show that the addition of perlite as a pozzolanic additive to lime stabilized soil improves the strength and durability. Unconfined compressive strength increases with increased perlite content. The findings indicate that using natural pozzolan which is cheaper than lime, has positive effect in strength and durability of soils and can result cost reduction of stabilization.

Improvement Effectiveness of Soft Ground Using Hardening Agent (고화재 혼합처리를 이용한 연약지반개량효과)

  • Chun, Byung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.2
    • /
    • pp.59-64
    • /
    • 2001
  • Recently, the application of shallow mixing method using hardening agent has increased because of the advantage of securing trafficability, reducing the working period, solving environmental problems caused by dumped and replaced soil, etc. In this paper, three types of representative hardening agents in Korea are used to achieve the optimum of ground improvement. 1he unconfined compression tests are carried out with specimens under various mixing ratios and curing periods of hardening agent to assess the stabilizing ability. The unconfined strengths on site were estimated with various mixing ratios based on the results of the laboratory tests. It was estimated that the improved strength on site was higher than that of the required strength $5.0kgf/cm^2$.

  • PDF

Engineering Properties of Flowable Composite Soil with Waste Tire and Bottom Ash (폐타이어-저회가 혼합된 유동성 복합지반재료의 공학적 특성)

  • Kim, Yun-Tae;Kang, Hyo-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.52-58
    • /
    • 2010
  • This study investigated the engineering properties of waste tire powder-bottom ash added composite soil, which was developed to recycle dredged soil, bottom ash, and waste tire powder. Test specimens were prepared using 5 different percentages of waste tire powder content(0%, 25%, 50%, 75%, and 100% by weight of the dry dredged soil), three different percentages of bottom ash content (0%, 50%, and 100% by weight of the dry dredged soil), and three different particle sizes of waste tire powder (0.1~2 mm, 0.9~5 mm, and 2~10 mm). Several series of unconfined compression tests, direct shear tests, and flow tests were conducted. The experimental results indicated that the waste tire powder content, particle size of waste tire powder, and bottom ash content influenced the strength and stress-strain behavior of the composite soil. The flow value increased with an increase in water content, but decreased with an increase in waste tire powder content.

Low strength concrete members externally confined with FRP sheets

  • Ilki, Alper;Kumbasar, Nahit;Koc, Volkan
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.167-194
    • /
    • 2004
  • In this paper axial loading tests on low strength concrete members, which were confined with various thickness of carbon fiber reinforced polymer (CFRP) composite sheets are described. Totally 46 specimens with circular, square and rectangular cross-sections with unconfined concrete compressive strengths between 6 and 10 MPa were included in the test program. During the tests, a photogrammetrical deformation measurement technique was also used, as well as conventional measurement techniques. The contribution of external confinement with CFRP composite sheets to the compressive behavior of the specimens with low strength concrete is evaluated quantitatively, in terms of strength, longitudinal and lateral deformability and energy dissipation. The effects of width/depth ratios and the corner radius of the specimens with rectangular cross-section on the axial behavior were also examined. It was seen that the effectiveness of the external confinement with CFRP composite sheets is much more pronounced, when the unconfined concrete compressive strength is relatively lower. It was also found that the available analytical expressions proposed for normal or high strength concrete confined by CFRP sheets could not predict the strength and deformability of CFRP confined low strength concrete accurately. New expressions are proposed for the compressive strength and the ultimate axial strain of CFRP confined low strength concrete.

Compressive and tensile strength enhancement of soft soils using nanocarbons

  • Taha, Mohd R.;Alsharef, Jamal M.A.;Khan, Tanveer A.;Aziz, Mubashir;Gaber, Maryam
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.559-567
    • /
    • 2018
  • Technological innovations in sustainable materials for soil improvement have attracted considerable interest due to energy crisis and environmental concerns in recent years. This study presents results of a comprehensive investigation on utilization of nanocarbons in reinforcement of a residual soil mixed with 0, 10 and 20% bentonite. Effects of adding proportionate quantities (0, 0.05, 0.075, 0.1 and 0.2%) of carbon nanotubes and carbon nanofibers to soil samples of different plasticities were evaluated. The investigation revealed that the inclusion of nanocarbons into the soil samples significantly improved unconfined compressive strength, Young's modulus and indirect tensile strength. It was observed that carbon nanofibers showed better performance as compared to carbon nanotubes. The nanosized diameter and high aspect ratio of nanocarbons make it possible to distribute the reinforcing materials on a much smaller scale and bridge the inter-particles voids. As a result, a better 'soil-reinforcing material' interaction is achieved and desired properties of the soil are improved at nanolevel.

Study on engineering properties of xanthan gum reinforced kaolinite

  • Zhanbo Cheng;Xueyu Geng
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.501-511
    • /
    • 2023
  • The strengthening efficiency of biopolymer treated soil depends on biopolymer type, concentration ratio, soil type, initial water content, curing time and mixing method. In this study, the physical and mechanical properties of xanthan gum (XG) treated kaolinite were investigated through compaction test, Atterberg limit test, triaxial test and unconfined compression test. The results indicated that the optimum water content (OWC) increased from 30.3% of untreated clay to 33.5% of 5% XG treated clay, while the maximum dry density has a slight increase from 13.96 kg/m3 to 14 kg/m3 of 0.2% XG treated clay and decrease to 2.7 kg/m3 of 5% XG treated clay. Meanwhile, the plastic limit of XG treated clay increased with the increase of XG concentration, while 0.5% XG treated clay can be observed the maximum liquid limit with 79.5%. Moreover, there are the ideal water content about 1.3-1.5 times of the optimum water content achieving the maximum dry density and curing time to obtain the maximum compressive strength for different XG contents, which the UCS is 1.52 and 2.07 times of the maximum UCS of untreated soil for 0.5% and 1% XG treated clay, respectively. In addition, hot-dry mixing can achieve highest UCS than other mixing methods (e.g., dry mixing, wet mixing and hot-wet mixing).

Severe acid rain simulation using geotechnical experimental tests with mathematical modeling

  • Raheem, Aram M.;Ali, Shno M.
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.549-565
    • /
    • 2022
  • Severe acid rains can be a major source for geotechnical and environmental problems in any soil depending on the acid type and concentration. Hence, this study investigates the individual severe effects of sulfuric, hydrochloric and nitric acids on the geotechnical properties of real field soil through a series of experimental laboratory tests. The laboratory program consists of experimental tests such as consistency, compaction, unconfined compression, pH determination, electrical conductivity, total dissolved salts, total suspended solids, gypsum and carbonates contents. The experimental tests have been performed on the untreated soil and individual acid treated soil for acid concentrations range of 0% to 20% by weight. In addition, a unique hyperbolic mathematical model has been used to predict significant geotechnical characteristics for acid treated soil. The plastic and liquid limits and optimum moisture content have been increased under the effect of all the used acids whereas the maximum dry density and unconfined stress-strain behavior have been decreased with increasing the acid concentrations. Moreover, the used hyperbolic mathematical model has predicted all the geotechnical characteristics very well with a very high coefficient of determination (R2) value and lowest root mean square error (RMSE) estimate.