• Title/Summary/Keyword: unconfined

Search Result 738, Processing Time 0.024 seconds

Laboratory Investigation on Construction Method of Geogrid Encased Stone Column (지오그리드 감쌈 Stone Column 제작 방안에 대한 실험적 연구)

  • Lee, Dae-Young;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.73-80
    • /
    • 2011
  • This paper presents the results of a laboratory investigation on construction method of geogrid encased stone column (GESC). In order to analyze effects of load carrying capacity and geogrid deformation characteristics of GESC, a series of medium scale unconfined compression tests with different overlay methods and reduced model tests were performed. The test results show that the method of overlap provides a simple and effective method of encasement construction. It is also found that geogrid encasement construction using method of overlap has important factor which can be applied to field tests. The geogrid encasement method related to effect of reinforcement is presented by laboratory test results.

Standardization of Ice Mechanics Experimental Procedures in a Cold Room (Cold Room을 이용한 얼음 및 동토의 재료특성 계측 실험기법의 표준화)

  • Kim, Jung-Hyun;Choi, Kyung-Sik;Seo, Young-Kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.60-66
    • /
    • 2007
  • The first Korean cold room facility for ice mechanics experiments was assembled in 2004. Since then, the $4m{\times}6m$ cold room facility has been used, extensively under various environmental and loading conditions. After reviewing published references on cold room testing methods and also by trial and error, the standard procedures for testing and preparing laboratory ice material were established for the measurement of basic ice properties. In this paper, laboratory experimental techniques with the cold room facility and standard procedures established for ice material properties are introduced. Test specimens include laboratory-grown fresh water ice and frozen soils. Tests are carried out for unconfined compressive strength. Preparation and dimension of the specimen are the most important issues arising in cold room tests. The details of specimen preparation, testing procedure and strength test results are also discussed.

Optimal Mixture Contents of Accelerated Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착잔토를 재활용한 지중전력구조물 급결성 유동화 뒷채움재의 최적배합비)

  • Cheon, Seon-Ho;Jeong, Sang-Seom;Lee, Dae-Soo;Cho, Hwa-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.395-404
    • /
    • 2005
  • This study is to evaluate the physical and mechanical characteristics of flowable backfill and search for the optimal mixture contents of it used for constructing underground power utilities. flowable backfill is known as soil-cement slurry, void fill, and controlled low-strength material(CLSM). The benefits of CLSM include reduced equipment costs, faster construction, re-excavation in the future, and the ability to place material in confined spaces such as narrow parts nearly impossible for compaction or perimeter of underground power cables. The flowable slurry mixture made with 9 types of soil and 6 types of accelerated mixtures in the laboratory were evaluated for bleeding, flowability, heat resistance, and unconfined compressive strength to meet the aim values of this study.

  • PDF

A Study on the Ground Reinforcement and Impermeable Effect by McG (McG(맥) 주입공법에 의한 지반보강 및 차수효과에 관한 연구)

  • Jung, Jong-Ju;Do, Kyung-Yang;Shin, Tai-Wook;Park, Won-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.581-590
    • /
    • 2005
  • The grouting method is widely used as the impermeable effect and ground reinforcement in construction. But, it has a problem that cement and grout material are not mixed well in the injection tip equipment and an opposite flow and interception state of the chemical grouting is happened. so, continuous work is difficult. McG method installed a special grouting and device, made possible go well mixing of grouting material and prevent flowing backward and block of nozzle also diversify powder rate of cement that is grouting material to select sutible material in layer conditions. YSS that lowered $Na_2O$ influencing durability and circumstance is developed by gel-forming reaction material. so eco-circumstance and durability is increased by minimizing dissolution of underground water. In this study, it is assumed that seepage state of the injection material using a special injection tip equipment and a unconfined compressive strenth by mixing a various injection material of various. And it is confirmed that strenth increase effect and permeable decrease of the improved body through the test execution and field execution.

  • PDF

Installation of Pilot Plant and Troubleshootings of Horizontally Linked Helical Turbines with Unconfined Free Flow Condition in Artificial Channel (인공수로에서의 수평 배열 헬리컬수차 현장시험 사례와 문제점)

  • Kang, Keum-Seok;Kim, Ji-Young;Lee, Kwang-Soo;Myung, Cheol-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.626-629
    • /
    • 2007
  • 국내외에 아직 개발 실적이 없는 발전소의 해수방류수를 이용한 조류식발전시스템의 개발을 위하여, 현재 하동화력발전소 해수방수로를 대상으로 헬리컬 수차를 이용한 조류식발전 시험설비를 제작 완료하고, 성능 시험이 진행 중이며, 본 연구에서는 성능 시험 과정에서 나타난 제반 문제점을 제시하고 그에 대한 원인 및 대책을 분석해 보았다. 본 시험설비는 인공수로에서 수평 배열 헬리컬수차로서 기계장치의 안정성 및 수차의 효율을 평가하고자 하였다. 조류식 시험장치는 배수로의 빠른 유속으로 인하여 시공이 매우 어려웠으며, 인공수로임에도 불구하고 유지관리를 위한 적정 구조 선정이 곤란한 상황이었다. 또한, 헬리컬 수차는 서로 직렬연결되어 운전할 수 있는 장점이 있으나, 본 연구와 같이 다수의 수차가 연결될 경우, 보다 높은 축정렬 정확성, 커플링, 베어링 정밀도 등이 요구되어 효율 감소의 원인이 됨을 확인하였다. 본 장치는 시험용으로서 정밀한 베어링 및 수밀구조, 증속장치를 채택하지 않았으나, 상업용에서는 이를 개선할 필요성이 있다고 판단된다. 또한, 수차의 설치와 유지관리 조건 향상, 수차 통과부의 유황 개선, 수차의 효율 향상을 위하여 조류식 수차에도 유도수로와 casing, draft tube와 같은 Confined flow 구조를 일부 채택할 필요성이 있다고 판단된다.

  • PDF

Behavior of circular CFT columns subject to axial force and bending moment

  • Kwak, Ji-Hyun;Kwak, Hyo-Gyoung;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.173-190
    • /
    • 2013
  • The major objective of this paper is to evaluate the behavior and ultimate resisting capacity of circular CFT columns. To consider the confinement effect, proper material models with respect to the confinement pressure are selected. A fiber section approach is adopted to simulate the nonlinear stress distribution along the section depth. Material nonlinearity due to the cracking of concrete and the yielding of the surrounding steel tube, as well as geometric nonlinearity due to the P-${\Delta}$ effect, are taken into account. The validity of the proposed numerical analysis model is established by comparing the analytical predictions with the results from previous experimental studies about pure bending and eccentric axial loading. Numerical predictions using an unconfined material model were also compared to investigate the confinement effects on various loading combinations. The ultimate resisting capacities predicted by the proposed numerical model and the design guidelines in Eurocode 4 are compared to evaluate the existing design recommendation.

Unconfined Compressive Strength and Micro-Structure Properties of CSG Materials Due to Specimen Size (시료 크기에 따른 CSG재료의 압축강도 및 미세 구조 특성)

  • Kim, Young-Ik;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.93-101
    • /
    • 2010
  • The purpose of this study is to provide basic data for utilization in environment-friendly and economically outstanding CSG construction method by physical and mechanical properties of CSG materials including characteristics of uniaxial compressive strength, microscopic structure and freezing and thawing resistance in accordance with the cement content and curing time of the cement, and size of specimen. In this study, specimens with cement content of 4, 6, 8 and 10% of the total weight were, and, in order to examine the characteristics of the sizes of specimen, specimens with ${\Phi}50{\times}100mm$, ${\Phi}100{\times}200mm$ and ${\Phi}150{\times}300mm$ were manufactured to assess the features including compressive strength, microscopic structure, freezing and thawing, and degree of wet-dry. As results, it was found that with greater size specimen or contents of cement in the specimen, compressive strength, freezing and thawing resistance, and wet-dry resistance increase. Moreover, reactive products for each size of specimen were examined and it was possible to verify that some typical needle structured ettringite was generated due to blending of cement through microscopic structure analysis such as SEM and EDS analysis.

Effect of blockage on the drag of a triangular cylinder

  • Yeung, W.W.H.
    • Wind and Structures
    • /
    • v.12 no.1
    • /
    • pp.49-61
    • /
    • 2009
  • A method is presented to estimate the form drag and the base pressure on a triangular cylinder in the presence of blockage effect. The Strouhal number, which is found to increase with the flow constriction experimentally by Ramamurthy & Ng (1973), may be decoupled from the blockage effect when re-defined by using the velocity at flow separation and a theoretical wake width. By incorporating this wake width into the momentum equation by Maskell (1963) for the confined flow, a relationship between the form drag and the base pressure is derived. Independently, the experimental data of surface pressure from Ramamurthy & Lee (1973) are found to be independent of the blockage effect when expressed in terms of a modified pressure coefficient involving the pressure at separation. Using the potential flow model by Parkinson & Jandali (1970) and its subsequent development in Yeung & Parkinson (2000) for the unconfined flow, a linear relation between the pressure at separation and the form drag is formulated. By solving the two equations simultaneously with a specified blockage ratio and an apex angle of the triangular cylinder, the predictions of the drag and the base pressure are in reasonable agreement with experimental data. A new theoretical relationship for the Strouhal number, pressure drag coefficient and base pressure proposed in this study allows the confinement effect to be appropriately taken into consideration. The present approach may be extended to three-dimensional bluff bodies.

Stabilization of expansive soil using industrial wastes

  • Mohanty, Soumendra K.;Pradhan, Pradip K.;Mohanty, Chitta R.
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.111-125
    • /
    • 2017
  • Swelling and shrinkage characteristics of expansive fine grained soil cause volumetric changes followed by distress and damage to the structures. Soil stabilization can be explained as the alteration of the soil properties by chemical, mechanical or any other means in order to enhance the engineering properties of the soil. Utilization of industrial wastes in soil stabilization is cost effective and environment friendly. This paper presents an experimental study on stabilization of expansive soil using industrial wastes, viz. fly ash and dolochar. The paper includes the evaluation of engineering properties like unconfined compressive strength and California bearing ratio (CBR) of expansive soil collected from Balasore district of Odisha stabilized with fly ash and dolochar in different proportions and to predict the influence of these additives on engineering properties and strength characteristics of expansive soil. Both fly ash and dolochar were found to increase the CBR and decrease many index properties such as liquid limit, plastic limit, plasticity index, swelling index and UCS, thus enhancing the strength parameters of expansive soil.

Soil stabilization by ground bottom ash and red mud

  • Kim, Youngsang;Dang, My Quoc;Do, Tan Manh;Lee, Joon Kyu
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.105-112
    • /
    • 2018
  • This paper presents results of a compressive investigation conducted on weathered soil stabilized with ground bottom ash (GBA) and red mud (RM). The effects of water/binder ratio, RM/GBA ratio, chemical activator (NaOH and $Na_2SiO_3$) and curing time on unconfined compressive strength of stabilized soils were examined. The results show that the water/binder ratio of 1.2 is optimum ratio at which the stabilized soils have the maximum compressive strength. For 28 days of curing, the compressive strength of soils stabilized with alkali-activated GBA and RM varies between 1.5 MPa and 4.1 MPa. The addition of GBA, RM and chemical activators enhanced strength development and the rate of strength improvement was more significant at the later age than at the early age. The potential environmental impacts of stabilized soils were also assessed. The chemical property changes of leachate from stabilized soils were analyzed in terms of pH and concentrations of hazardous elements. The observation revealed that the soil mixture with ground bottom ash and red mud proved environmentally safe.