• Title/Summary/Keyword: unconfined

Search Result 738, Processing Time 0.026 seconds

Reaction Products and Properties of Clay Mixed with Lime (점토와 석회의 혼합에 의한 반응생성물과 물성변화)

  • 김병규;황진연
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.505-512
    • /
    • 1999
  • Soft marine clay deposits pose several foundation problems. Generally, lime stabilization is used worldwide for solidifying of soft marine clay deposits. In this paper, a series of laboratory tests were conducted to verify clay-lime reaction. A clay was collected from Pusan, which was mixed with various quantities of quick lime and slaked lime. Various compounds produced by clay-lime reaction were identified by X-ray diffraction analysis. The physico-chemical properties of the clay were also investigated. Compounds such as calcium silicate hydrate (CSH), calcium aluminate hydrate (CAH), calcium aluminate (CA), hillebrandite, and gehlenite were identified. It is likely that such compounds were mainly produced by pozzolanic reaction. Based on the change of physico-chemical properties obtained by the reaction, the water content was considerably decreased when lime was added to the clay. In addition, unconfined strength was increased. In the other hand, quick lime was more effective than slaked lime in decreasing and increasing of the water content and unconfined strength, respectively. Fewer cracks were produced when the clay was mixed with quick lime. It is suggested that these beneficial changes produced by the mixing of the clay and lime depend on the properties of compounds obtained by chemical reaction.

  • PDF

Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghorbani, Ali;Alamoti, Mohsen Nasiri
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • The importance of using materials cost effectively to enhance the strength and reduce the cost, and weight of earth fill materials in geotechnical engineering led researchers to seek for modifying the soil properties by adding proper additives. Lightweight fill materials made of soil, binder, water, and Expanded polystyrene (EPS) beads are increasingly being used in geotechnical practices. This paper primarily investigates the behavior of sandy soil, modified by EPS particles. Besides, the mechanical properties of blending sand, EPS and the binder material such as fly ash and cement were examined in different mixing ratios using a number of various laboratory studies including the Modified Standard Proctor (MSP) test, the Unconfined Compressive Strength (UCS) test, the California Bearing Ratio (CBR) test and the Direct Shear test (DST). According to the results, an increase of 0.1% of EPS results in a reduction of the density of the mixture for 10%, as well as making the mixture more ductile rather than brittle. Moreover, the compressive strength, CBR value and shear strength parameters of the mixture decreases by an increase of the EPS beads, a trend on the contrary to the increase of cement and fly ash content.

Stabilized marine and desert sands with deep mixing of cement and sodium bentonite

  • Saberian, Mohammad;Moradi, Mojtaba;Vali, Ramin;Li, Jie
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.553-562
    • /
    • 2018
  • Road construction is becoming increasingly important in marine and desert areas due to population growth and economic development. However, the load carrying capacity of pavement is of gear concern to design and geotechnical engineers because of the poor engineering properties of the soils in these areas. Therefore, stabilization of the soils is regarded as an important issue. Besides, due to the fuels combustion and carbonate decomposition, cement industry generates around 5% of global $CO_2$ emission. Thus, using bentonite as a natural pozzolan in soil stabilization is more eco-friendly than using cement. The aim of this research is to experimentally study of the stabilized marine and desert sands using deep mixing method by ordinary Portland cement and sodium bentonite. Different partial percentages of cement along with different weight percentages of sodium bentonite were added to the sands. Unconfined compression test (UCS), Energy Dispersive X-ray (EDX), and Scanning Electron Microscope (SEM) were conducted on the specimens. Moreover, a mathematical model was developed for predicting the strength of the treated soils.

Experimental Study of Waste Tire Powder-Added Lightweight Soil as Flowable Backfill (유동성 뒷채움재인 폐타이어 혼합경량토에 대한 실험적 연구)

  • Kim, Yun-Tae;Kang, Hyo-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.112-118
    • /
    • 2008
  • The purpose of this study was to determine the engineering and environmental properties of the waste tire powder-added lightweight soil (TLS) used as flowable backfill. The TLS used in this experiment consisted of dredged soil, bottom ash, waste tire powder and cement. Test specimens were prepared with various contents of waste tire powder ranging from 0% to 100% at 25% intervals and water contents ranging from 140% to 200% by the weight of the dry dredged soil. Several series of unconfined compression tests, flow tests, and leaching tests were carried out. Experimental results for the TLS indicated that the unconfined compressive strength, secant modulus (), and unit weight of the TLS decreased with an increase in waste tire powder content. However, as the waste tire powder content increased, the stress-strain relationship of the TLS showed more ductile behavior rather than brittle behavior. The flow value increased with an increase in water content, but decreased with an increase in waste tire powder content. The result of the leaching test showed that the leaching amounts of heavy metals were lower than the permitted limits suggested by the Ministry of Environment.

An Experimental Research on the Confinement Effect of Concrete Specimens with Spirals (나선근에 의한 콘크리트의 횡보강 효과에 관한 실험적 연구)

  • 김진근;박찬규
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.146-154
    • /
    • 1995
  • I n this paper, an experimental research was carried out to investigate the confinement effect of spiral reinforcements in concrete column specimens subjected to t.he concentric axial corn pressive loads. Main variables were the compressive strengths of concrete of 27.2, 62.4 and 81.2 MPa, and the spacings of spirals of 120, 60, 40, 30, 25 and 20mm. and the yield strengths of spir als of 451 and 1375MPa, respectively. For the same volumetric ratio and yield strength of spir als, it was shown that the strength increment of confined concrete was almost same regardless of the strength of unconfined concrete, however, the axial stram at maximum stress was decreas ed with increasing of the compressive strength of unconfined concrete.

The Consequence Analysis for Unconfined Vapor Cloud Explosion Accident by the Continuous Release of Butane Vapor in the Debutanizing Process of Naphtha Cracking Plant (나프타분해플랜트의 부탄추출공정에서 부탄증기의 연속누출에 의한 증기운 폭발사고의 영향평가)

  • 손민일;이헌창;장서일;김태옥
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.33-43
    • /
    • 2000
  • The consequence analysis for the unconfined vapor cloud explosion(UVCE) accident by the continuous release of butane vapor was performed and effects of process parameters on consequences were analyzed in standard conditions. For the case of continuous release(87.8 kg/s) of butane vapor at 8 m elevated height in the debutanizing process of tile naphtha cracking plant operating at 877 kPa & 346.75 K, we found that combustion ranges of dispersed vapor estimated by HMP model were 11.2~120.2 m and overpressures estimated by TNT equivalency model at 200 m were about 37.35~55.1 kPa. Also, overpressures estimated by Model UVCE I based on advective travel time to $X_{LFL}$ were smaller than those estimated by Model UVCE IIbased on real travel time between $X_{UFL}$ and $X_{LFL}$. At the same time, damage intensities at 200 m and effect ranges by overpressure could be predicted. Furthermore, simulation results showed that effects of operating pressures on consequences were larger than those of operating temperatures and results of accidents were increased with increasing operating pressures. At this time, sensitivities of overpressures for UVCE accident by the continuous release were about 5 kPa/atm.

  • PDF

Mechanism of Consolidation Displacement on Internal Behavior of Clay Ground Improved by Sand Drain (샌드 드레인으로 개량된 점토지반의 내부거동에 대한 압밀변형 메커니즘)

  • Baek, Won-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.69-77
    • /
    • 2006
  • In this study, the large scaled model test improved by sand drain was carried out to clarify the internal behavior of the three-dimensional consolidation under different secondary consolidation periods. From the results of model test, the void ratio in the undrained side was lager than in the drained side. In addition, the unconfined compressive strength in the long-term consolidated specimen was larger than that in the short-term consolidated one. It was also found that the unconfined compressive strength was larger in the drained side than in the undrained side. These reasons are considered to be due to the large effective stress by quick pore water pressure dissipation by the short drainage distance in the drained side. Furthermore, in order to investigate the three-dimensional consolidation behavior of clay ground improved by the vertical drain method, the numerical analysis obtained from the three-dimensional elasto-viscous consolidation theory proposed by author (2006) were compared with the test results. It was found that during the three-dimensional consolidation process not only vertical displacement but also radial displacement occurs inside the specimen.

Mix design of CSG method (CSG 공법적용을 위한 배합설계기법)

  • Kim, Ki-Young;Jeon, Je-Sung;Cho, Sung-Eun;Lee, Jong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.293-301
    • /
    • 2005
  • The CSG(Cemented Sand and Gravel) method is construction technique using as raw materials earth and gravel generated from a local construction site, mixing them with cement and rolling with vibration rollers. Recently, The use of this method for cofferdam and large dam is gradually increasing in Japan. The purpose of an CSG mix design is to develop project specific properties to meet the structure design requirements. But uniform mix design of CSG method has not yet been established. The experience of practitioners from the geotechnical and concrete disciplines has given rise to two genernal approaches to mix design for CSG. This paper reports the concept of how to set the mix design according to modified Proctor compaction test process and the test results on properties such as compaction, compressive strength and modulus of elasticity that obtained by unconfined compression test.

  • PDF

Mechanical Properties of the Ground Improved by High Pressure Jet-Grouting and Analysis of Deformation of Propped Retaining Walls (고압분사주입공법으로 보강된 개량체의 특성 및 흙막이벽의 변형해석)

  • 심태섭;주승완
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.98-105
    • /
    • 2000
  • Recently, the construction method of high pressure jet-grouting is in wide-use, for the purpose of structure foundation ground, reinforcing of ground behind propped retaining walls and cut-off in order to perform safe construction of underground excavation work. This study was performed a serious of tests of field permeability and unconfined compressive strength upon ground improved established on the ground behind propped retaining walls and examined proper jet mechanism by changing the construction parameter value of high pressure jet-grouting. In addition, we got the conclusion like the followings as a result of inspecting the condition of earth pressure distribution and deformation, using elasto-plastic method and FEM. 1. In that characteristics of strength of ground improved, with the same condition of construction parameter, unconfined compressive strength of sand gravel is shown bigger than that of silty sand by about 1.6 times and cut-off effect is shown to have effect of reducing the permeability of original ground by about 10$^{-2}$ ~10$^{-3}$ cm/s. 2. As a result of analysis of figures of horizontal displacing quantity of propped retaining walls materials regarding before and after High pressure jet- grouting through FEM, the reducing quantity of 0.1~0.3mm in maximum horizontal displacement is shown.

  • PDF

A Study on the Engineering and Environmental Characteristics of Phosphogypsum-Cement-Soil Mixtures (인산석고 시멘트 혼합토의 공학적.환경적 특성 연구)

  • Chang, Dong-Su;Yeon, Kyu-Seok;Kim, Ki-Sung;Ha, Seon-Hyo;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.83-91
    • /
    • 2011
  • This study aimed to investigate the engineering and environmental characteristics of phosphogypsum-cement-soil mixtures composed of phosphogypsum, soil, and a small amount of cement was analysed on the basis of the unconfined compression test, the tensile strength test, the freezing and thawing test, the wetting and drying test, SEM and EDS analysis, XRD analysis and Leaching test. The specimens were manufactured with soil, cement and phosphogypsum. The cement contents was 10 %, and the phosphogypsum contents was 10, 20, 30, and 40 % by the weight of total dry soil. Each specimen was manufactured after curing at constant temperature and humidity room for 3, 7 and 28 days, after which the engineering characteristics of phosphogypsum-cement-soil mixtures were investigated using the unconfined compression test, the tensile strength test, the freezing and thawing test, the wetting and drying test. The basic data were presented for the application of phosphogypsum-cement-soil mixtures as construction materials. To investigate the environmental characteristics, leaching test was performed and the leaching test results were far below than of regulatory requirement of Waste Management Act in Korea. Therefore the results show that phosphogypsum is environmentally safe and can be used as construction materials in environmental aspect.