• 제목/요약/키워드: uncertainty sources

Search Result 278, Processing Time 0.043 seconds

An improvement on fuzzy seismic fragility analysis using gene expression programming

  • Ebrahimi, Elaheh;Abdollahzadeh, Gholamreza;Jahani, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.577-591
    • /
    • 2022
  • This paper develops a comparatively time-efficient methodology for performing seismic fragility analysis of the reinforced concrete (RC) buildings in the presence of uncertainty sources. It aims to appraise the effectiveness of any variation in the material's mechanical properties as epistemic uncertainty, and the record-to-record variation as aleatory uncertainty in structural response. In this respect, the fuzzy set theory, a well-known 𝛼-cut approach, and the Genetic Algorithm (GA) assess the median of collapse fragility curves as a fuzzy response. GA is requisite for searching the maxima and minima of the objective function (median fragility herein) in each membership degree, 𝛼. As this is a complicated and time-consuming process, the authors propose utilizing the Gene Expression Programming-based (GEP-based) equation for reducing the computational analysis time of the case study building significantly. The results indicate that the proposed structural analysis algorithm on the derived GEP model is able to compute the fuzzy median fragility about 33.3% faster, with errors less than 1%.

Uncertainty evaluation of dioxin analysis in blood samples (혈액 시료 중 다이옥신의 농도 분석 결과에 대한 불확도 평가)

  • Mun, Su-Jung;Kim, Byung-Hoon;Woo, Jin-Chun;Chang, Yoon-Seok
    • Analytical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.475-482
    • /
    • 2003
  • Uncertainty of final measurement results considering main uncertainty sources being in dioxin analysis of a blood sample was estimated. 'The Guide to the Expression of Uncertainty in Measurement' was suggested for accomplishment of this study. After uncertainties for the 11 compounds detected in this experiment of the 17 target compounds of dioxin and furan were calculated considering the uncertainty sources of each step, uncertainty for the total dioxin concentration was estimated by combining these values. The concentration of dioxin in blood sample was expressed as $0.0746{\pm}0.0074pg$ I-TEQ/g weight or $20.68{\pm}2.04pg$ I-TEQ/g lipid, including the uncertainty values obtained in this way. The former expression indicates the conversion concentration into the sample weight and the latter one indicates the conversion concentration into the lipid weight. The quality of measured analytical results could be assured quantitatively by estimating uncertainty of measurement results and showing the range of measurand.

Fabrication Tolerance of InGaAsP/InP-Air-Aperture Micropillar Cavities as 1.55-㎛ Quantum Dot Single-Photon Sources

  • Huang, Shuai;Xie, Xiumin;Xu, Qiang;Zhao, Xinhua;Deng, Guangwei;Zhou, Qiang;Wang, You;Song, Hai-Zhi
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.509-515
    • /
    • 2020
  • A practical single photon source for fiber-based quantum information processing is still lacking. As a possible 1.55-㎛ quantum-dot single photon source, an InGaAsP/InP-air-aperture micropillar cavity is investigated in terms of fabrication tolerance. By properly modeling the processing uncertainty in layer thickness, layer diameter, surface roughness and the cavity shape distortion, the fabrication imperfection effects on the cavity quality are simulated using a finite-difference time-domain method. It turns out that, the cavity quality is not significantly changing with the processing precision, indicating the robustness against the imperfection of the fabrication processing. Under thickness error of ±2 nm, diameter uncertainty of ±2%, surface roughness of ±2.5 nm, and sidewall inclination of 0.5°, which are all readily available in current material and device fabrication techniques, the cavity quality remains good enough to form highly efficient and coherent 1.55-㎛ single photon sources. It is thus implied that a quantum dot contained InGaAsP/InP-air-aperture micropillar cavity is prospectively a practical candidate for single photon sources applied in a fiber-based quantum information network.

The Economic Evaluation of the Renewable Energy Projects using the Geske Model (게스케(Geske) 모델을 이용한 신재생에너지사업의 경제성 분석)

  • Jaehun Sim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.31-41
    • /
    • 2022
  • As the environmental impacts of fossil fuel energy sources increase, the South Korean government has tried to change non-environmental-friendly enery sources to environmental-friendly energy sources in order to mitigate environmental effects, which lead to global warming and air pollution. With both a limited budget and limited time, it is essential to accurately evaluate the economic and environmental effects of renewable energy projects for the efficient and effective operation of renewable energy plants. Although the traditional economic evaluation methods are not ideal for evaluating the economic impacts of renewable energy projects, they can still be used for this purpose. Renewable energy projects involve many risks due to various uncertainties. For this reason, this study utilizes a real option method, the Geske compound model, to evaluate the renewable energy projects on Jeju Island in terms of economic and environmental values. This study has developed an economic evaluation model based on the Geske compound model to investigate the influences of flexibility and uncertainty factors on the evaluation process. This study further conducts a sensitivity analysis to examine how two uncertainty factors (namely, investment cost and wind energy production) influence the economic and environmental value of renewable energy projects.

Estimation of Measurement Uncertainty in Evaluation of Tensile Properties (인장 물성 측정 불확도 평가)

  • Huh, Y.H.;Lee, H.M.;Kim, D.J.;Park, J.S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.73-78
    • /
    • 2010
  • Estimation of tensile properties measurement uncertainty of material was carried out. Sources of uncertainty affecting the measurement of tensile properties were classified and analyzed. The models for uncertainty evaluation of measurands to be determined from tensile test, such as elastic modulus, yield strength and tensile strength, were suggested and derived from the mathematical relations, corresponding to the respective measurands, and the measuring quantities by calculating each sensitivity coefficient of the quantities. Based on these models, the uncertainty of the tensile properties was evaluated from the experimental data of SUS316LN determined according to ISO 6892.

Uncertainty Assessment using Monte Carlo Simulation in Net Thrust Measurement at AETF

  • Lee, Bo-Hwa;Lee, Kyung-Jae;Yang, In-Young;Yang, Soo-Seok;Lee, Dae-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.126-131
    • /
    • 2007
  • In this paper, Monte Carlo Simulation (MCS) method was used as an uncertainty assessment tool for air flow, net thrust measurement. Uuncertainty sources of the net thrust measurement were analyzed, and the probability distribution characteristics of each source were discussed. Detailed MCS methodology was described including the effect of the number of simulation. Compared to the conventional sensitivity coefficient method, the MCS method has advantage in the uncertainty assessment. The MCS is comparatively simple, convenient and accurate, especially for complex or nonlinear measurement modeling equations. The uncertainty assessment result by MCS was compared with that of the conventional sensitivity coefficient method, and each method gave different result. The uncertainties in the net thrust measurement by the MCS and the conventional sensitivity coefficient method were 0.906% and 1.209%, respectively. It was concluded that the first order Taylor expansion in the conventional sensitivity coefficient method and the nonlinearity of model equation caused the difference. It was noted that the uncertainty assessment method should be selected carefully according to the mathematical characteristics of the model equation of the measurement.

Uncertainty Analysis of Dynamic Thermal Rating of Overhead Transmission Line

  • Zhou, Xing;Wang, Yanling;Zhou, Xiaofeng;Tao, Weihua;Niu, Zhiqiang;Qu, Ailing
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.331-343
    • /
    • 2019
  • Dynamic thermal rating of the overhead transmission lines is affected by many uncertain factors. The ambient temperature, wind speed and wind direction are the main sources of uncertainty. Measurement uncertainty is an important parameter to evaluate the reliability of measurement results. This paper presents the uncertainty analysis based on Monte Carlo. On the basis of establishing the mathematical model and setting the probability density function of the input parameter value, the probability density function of the output value is determined by probability distribution random sampling. Through the calculation and analysis of the transient thermal balance equation and the steady- state thermal balance equation, the steady-state current carrying capacity, the transient current carrying capacity, the standard uncertainty and the probability distribution of the minimum and maximum values of the conductor under 95% confidence interval are obtained. The simulation results indicate that Monte Carlo method can decrease the computational complexity, speed up the calculation, and increase the validity and reliability of the uncertainty evaluation.

Redundant Sensor Systems for the Measurement under Uncertain Conditions (불확실한 조건에서의 계측을 위한 잉여센서시스템)

  • 도용태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.436-439
    • /
    • 2000
  • To interact with surroundings robots and other automated machines employ sensors. However, the sensors measurements are uncertain in some amount and this may limit the potential applications of machines. Varying surrounding conditions and noises of sensor signals are major sources of the uncertainty. In this paper the uncertainty is tried to be reduced by using redundant sensor systems, where the redundancy is accomplished by varying the parameters of logically defined sensors. The target value redundantly measured is estimated adaptively. An experiment was done for measuring the stereoscopic 3D position measurement in an inconsistent light condition.

  • PDF

Study on Validity and Reliablity of the Cutoff Probe and Langmuir Probe via Comparative Experiment in the Processing Plasma

  • Kim, D.W.;You, S.J.;You, K.H.;Lee, J.W.;Kim, J.H.;Chang, H.Y.;Oh, W.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.576-576
    • /
    • 2013
  • Recently, diagnostics of plasma becomes more important due to requirement of precise control of plasma processing based on measurement of plasma characteristics. The Langmuir probe has been used for the diagnostics but it has an inevitable uncertainty and error sources such as incorrect tip length and RF noise. Instead of the Langmuir probe, various diagnostic methods have been developed and researched. The cutoff probe is promising one for plasma density using microwaves and resonance phenomenon at the plasma frequency. The cutoff probe has various advantages as follows; (i) it is simple and robust, (ii) it uses few assumptions, and (iii) it is free from deposition by reactive gas. However, the cutoff probe also has uncertainty and error sources such as gap between tips, tip length, direction of tip plane, and RF noise. In this study, the uncertainty and error sources in manufacturing both probes and in diagnostics process were analyzed via comparative experiment at various discharge conditions. Furthermore, to reveal the user dependence of both probes, three well trained Ph. D students made the Langmuir probe and the cutoff probe, respectively, and it were analyzed. Thought this study, it is established that reliability and validity of the Langmuir probe and the cutoff probe related with not only the intrinsic characteristics of probes but also probe user.

  • PDF