• Title/Summary/Keyword: uncertainty levels

Search Result 230, Processing Time 0.027 seconds

Effect of strain level on strength evaluation of date palm fiber-reinforced sand

  • Bahrami, Mohammad;Marandi, Seyed Morteza
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.327-336
    • /
    • 2020
  • Conventional researches on the behavior of fiber-reinforced and unreinforced soils often investigated the failure point. In this study, a concept is proposed in the comparison of the fiber-reinforced with unreinforced sand, by estimating the strength and strength ratio at different levels of strain. A comprehensive program of laboratory drained triaxial compression test was performed on compacted sand specimens, with and without date palm fiber. The fiber inclusion used in triaxial test specimens was form 0.25%-1.0% of the sand dry weight. The effect of the fiber inclusion and confining pressure at 0.5%, 1.0%, 1.5%, 3.0%, 6.0%, 9.0%, 12%, and 15% of the imposed strain levels on the specimen were considered and described. The results showed that, the trend and magnitude of the strength ratio is different for various strain levels. It also implies that, using failure strength from peak point or the strength corresponding to the axial strain of approximately 15% for evaluating the enhancement of strength or strength ratio, due to the reinforcement, may cause hazard and uncertainty in practical design. Therefore, it is necessary to consider the strength of fiber-reinforced specimen at the imposed strain level, compared to the unreinforced specimen.

Development of primary reference gas mixtures of 18 volatile organic compounds in hazardous air pollutants (5 nmol/mol level) and their analytical methods

  • Kang, Ji Hwan;Kim, Yong Doo;Lee, Jinhong;Lee, Sangil
    • Analytical Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.202-211
    • /
    • 2021
  • Volatile organic compounds (VOCs) in hazardous air pollutants (HAPs) have been regulated by the Air Pollution Control Act (1978) and their atmospheric concentrations have been monitored in 39 monitor sites in Korea. However, measurement standards of volatile organic compounds (VOCs) in HAPs at ambient levels have not been established in Korea. Primary reference gas mixtures (measurement standards) at ambient levels are required for accurately monitoring atmospheric VOCs in HAPs and managing their emissions. In this study, primary reference gas mixtures (PRMs) at 5 nmol/mol were developed in order to establish primary national standards of VOCs in HAPs at ambient levels. Primary reference gas mixtures (PRMs) were prepared in pressurized aluminum cylinders with special internal surface treatment using gravimetric method. Analytical methods using gas chromatography-flame ionization detector (GC-FID) coupled with a cryogenic preconcentrator were also developed to verify the consistency of gravimetrically prepared HAP VOCs PRMs. Three different columns installed in the GC-FID were evaluated and compared for the retention times and separation of eighteen target components in a chromatogram. Results show that the HAP VOCs PRMs at 5 nmol/mol were consistent within a relative expanded uncertainty (k=2) of less than 3 % except acrylonitrile (less than 6 %) and the 18 VOCs were stable for 1 year within their associated uncertainties.

Probabilistic study on buildings with MTMD system in different seismic performance levels

  • Etedali, Sadegh
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.429-441
    • /
    • 2022
  • A probabilistic assessment of the seismic-excited buildings with a multiple-tuned-mass-damper (MTMD) system is carried out in the presence of uncertainties of the structural model, MTMD system, and the stochastic model of the seismic excitations. A free search optimization procedure of the individual mass, stiffness and, damping parameters of the MTMD system based on the snap-drift cuckoo search (SDCS) optimization algorithm is proposed for the optimal design of the MTMD system. Considering a 10-story structure in three cases equipped with single tuned mass damper (STMS), 5-TMD and 10-TMD, sensitivity analyses are carried out using Sobol' indices based on the Monte Carlo simulation (MCS) method. Considering different seismic performance levels, the reliability analyses are done using MCS and kriging-based MCS methods. The results show the maximum structural responses are more affected by changes in the PGA and the stiffness coefficients of the structural floors and TMDs. The results indicate the kriging-based MCS method can estimate the accurate amount of failure probability by spending less time than the MCS. The results also show the MTMD gives a significant reduction in the structural failure probability. The effect of the MTMD on the reduction of the failure probability is remarkable in the performance levels of life safety and collapse prevention. The maximum drift of floors may be reduced for the nominal structural system by increasing the TMDs, however, the complexity of the MTMD model and increasing its corresponding uncertainty sources can be caused a slight increase in the failure probability of the structure.

Estimation of Time-dependent Damage Paths of Armors of Rubble-mound Breakwaters using Stochastic Processes (추계학적 확률과정을 이용한 경사제 피복재의 시간에 따른 피해 경로 추정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.246-257
    • /
    • 2015
  • The progressive degradation paths of structures have quantitatively been tracked by using stochastic processes, such as Wiener process, gamma process and compound Poisson process, in order to consider both the sampling uncertainty due to the usual lack of damage data and the temporal uncertainty associated with the deterioration evolution. Several important features of stochastic processes which should carefully be considered in application of the stochastic processes to practical problems have been figured out through assessing cumulative damage and lifetime distribution as a function of time. Especially, the Wiener process and the gamma process have straightforwardly been applied to armors of rubble-mound breakwaters by the aid of a sample path method based on Melby's formula which can estimate cumulative damage levels of armors over time. The sample path method have been developed to calibrate the related-parameters required in the stochastic modelling of armors of rubble-mound breakwaters. From the analyses, it is found that cumulative damage levels of armors have surely been saturated with time. Also, the exponent of power law in time, that plays a significant role in predicting the cumulative damage levels over time, can easily be determined, which makes the stochastic models possible to track the cumulative damage levels of armors of rubble-mound breakwaters over time. Finally, failure probabilities with respect to various critical limits have been analyzed throughout its anticipated service life.

Tracer Experiment for the Investigation of Urban Scale Dispersion of Air Pollutants - An Improved Method for the Release and Determination of Perfluorocarbon Tracers in the Urban Atmosphere (추적자 확산 실험에 의한 서울 도심 확산 현상 연구 - 도시규모 대기확산 실험을 위한 PFCs 추적자 방출 및 분석 시스템의 개발 및 적용 연구)

  • Yoo, Eun-Jin;Lee, Chong-Bum;Ro, Chul-Un;Kim, Hye-Kyeong;Lee, Gang-Woong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.547-556
    • /
    • 2007
  • The release, sampling and analytical methods have been developed and tested for perfluorocarbons (PFCs) atmospheric tracers in order to gain insight into the atmospheric transport and dispersion over the urban conditions of Seoul, Korea. Although PFCs tracer experiments provide unique opportunities to test local and urban scale of transport and dispersion, no previous experiment with PFCs has been conducted in Korea. PMCH and PDCH were chosen as targeted tracers in our study due to their extreme low ambient concentrations and great sensitivities among various PFCs. For PFCs release system, a set of micro-metering pump, electronic balance, vaporizing furnace and high speed blower was constructed for precise and accurate release of tracers. The precision of released rate by this system was estimated to be 1%. Samplings of PFCs were carried out by fabricated portable air samplers with micro pumps and rotameters into glass tubes packed with 150 mg of Carboxen-569. The uncertainty of these sampling system was maintained below 14%. PMCH and PDCH were quantified in GC/ECD with preconditioned injection system to eliminate the interference compounds using traps and subsequent catalytic conversion system prior to column separation. Three intensive field test were undertaken during the springtime of 2002 to 2004 in eastern part of Seoul. Daily background samples were collected to characterize the background levels of PMCH and PDCH prior to their release. The observed background concentrations of PMCH ranged from 3.5 to 10.1 fL/L and varied randomly in location and time in this study. Its mean and standard variation of background concentration ($6.8{\pm}1.9\;fL/L$) are higher than those ($3.2{\sim}5.8\;fL/L$) of other historic tracer studies. Identified uncertainty for background PMCH was $1.7{\sim}2.0\;fL/L$ using this analytical system. Combined relative uncertainty in determining the tracer's concentrations was estimated as 17%. However, its background concentrations and uncertainty in concentration determination were found to be low and stable enough for tracer study.

Minimizing the Risk of an Open Computing Environment Using the MAD Portfolio Optimization (최적포트폴리오 기법을 이용한 개방형 전산 환경의 안정성 확보에 관한 연구)

  • Kim, Hak-Jin;Park, Ji-Hyoun
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.15-31
    • /
    • 2009
  • The next generation IT environment is expected to be an open computing environment based on Grid computing technologies, which allow users to access to any type of computing resources through networks. The open computing environment has benefits in aspects of resource utilization, collaboration, flexibility and cost reduction. Due to the variation in performance of open computing resources, however, resource allocation simply based on users' budget and time constraints often fails to meet the Service Level Agreement(SLA). This paper proposes the Mean-Absolute Deviation(MAD) portfolio optimization approach, in which service brokers consider the uncertainty of performance of resources, and compose resource portfolios that minimize the uncertainty. In order to investigate the effect of this approach, we simulate an open computing environment with varying uncertainty levels, users' constraints, and brokers' optimization strategies. The simulation result concludes threefolds. First, the MAD portfolio optimization improves the success ratio of delivering the required performance to users. Second, the success ratio depends on the accuracy in predicting the variability of performance. Thirdly, the measured variability can also help service brokers expand their service to cost-critical users by discounting the access cost of open computing resources.

  • PDF

The Effect of Cash Holdings on Firm Value in Export Companies Listed in the KOSDAQ (코스닥시장에서 수출기업의 현금보유수준이 기업가치에 미치는 영향)

  • Oh, Hee-Hwa;Han, Kil-Seok
    • Asia-Pacific Journal of Business
    • /
    • v.10 no.4
    • /
    • pp.205-221
    • /
    • 2019
  • The purpose of this research is to investigate the effect of cash holdings on firm value in export companies. To investigate this effect, we analyzed 5,386 samples drawn from export companies listed in the KOSDAQ from 2011 to 2018. During this period, the International Financial reporting Standards have been employed. The research results are as follows. First, the results of a T-test showed that the level of the firm value of export companies with high levels of cash holdings is significantly higher than that of those with low levels of cash holdings. In addition, the level of the firm value of export companies with higher levels of cash holdings than in the previous year is higher than the level might otherwise be. Furthermore, the effects of cash holdings on firm value are similar to those on return on asset. These results suggested that export companies have little used a way of increasing their debt levels in order to increase cash holdings. Second, the results of a multivariate regression analysis presented that the cash holdings of export companies in listed the KOSDAQ significantly influence their firm value. Moreover, a higher level of cash holdings than in the previous year significantly affect firm value. These results proposed that making higher cash holdings than in the previous year might be useful in enhancing firm value. We found that export companies efforts to increase cash holdings positively influence changes in firm value. We also found that Korean export companies maintain their financial stability by obtaining sufficient liquidity specifically in a high uncertainty era like the recent time. We finally firmed an effort to maintain cash holdings as a reasonable choice for export companies.

Reliability Evaluation of a Microgrid Considering Its Operating Condition

  • Xu, Xufeng;Mitra, Joydeep;Wang, Tingting;Mu, Longhua
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • Microgrids offer several reliability benefits, such as the improvement of load-point reliability and the opportunity for reliability-differentiated services. The primary goal of this work is to investigate the impacts of operating condition on the reliability index for microgrid system. It relies on a component failure rate model which quantifies the relationship between component failure rate and state variables. Some parameters involved are characterized by subjective uncertainty. Thus, fuzzy numbers are introduced to represent such parameters, and an optimization model based on Fuzzy Chance Constrained Programming (FCCP) is established for reliability index calculation. In addition, we present a hybrid algorithm which combines scenario enumeration and fuzzy simulation as a solution tool. The simulations in a microgrid test system show that reliability indices without considering operating condition can often prove to be optimistic. We also investigate two groups of situations, which include the different penetration levels of microsource and different confidence levels. The results support the necessity of considering operating condition for achieving accurate reliability evaluation.

Evaluation Methods and Design for Bioartificial Liver Based on Perfusion Model

  • Park Yueng Guen;Ryu Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • A bioartificial liver (BAL) is a medical device entrapping living hepatocytes or immortalized cells derived from hepatocytes. Many efforts have already been made to maintain the functions of the hepatocytes in a BAL device over a long term. However, there is still some uncertainty as to their efficacy. and their limitations are unclear. Therefore, it is important to quantitatively evaluate the metabolic functions of a BAL. In previous studies on in vitro BAL devices, two test methods, an initial bolus loading and constant-rate infusion plus initial bolus loading, were theoretically carried out to obtain physiologic data on drugs. However, in the current study, the same two methods were used as a perfusion model and derived the same clearance characterized by an interrelationship between the perfusate flow rate and intrinsic clearance. The interrelationship indicated that the CL increased with an increasing perfusate flow rate and approached its maximum value, i.e. intrinsic clearance. In addition, to set up an in vivo BAL system, the toxic plateau levels in the BAL system were calculated for both series and parallel circuit models. The series model had a lower plateau level than the parellel model. The difference in the toxic plateau levels between the parallel and series models increased with an increasing number of BAL cartridges.

Safety Stock Management Framework for Semiconductor Enterprises Under Demand and Lead Time Uncertainties (반도체부품 수요 및 납기 불확실성을 고려한 안전재고 설정 프레임워크)

  • Ho-Sin Hwang;Su-Yeong Kim;Jin-Woo Oh;Se-Jin Jung;In-Beom Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.104-111
    • /
    • 2023
  • The semiconductor industry, which relies on global supply chains, has recently been facing longer lead time for material procurement due to supply chain uncertainties. Moreover, since increasing customer satisfaction and reducing inventory costs are in a trade-off relationship, it is challenging to determine the appropriate safety stock level under demand and lead time uncertainties. In this paper, we propose a framework for determining safety stock levels by utilizing the optimization method to determine the optimal safety stock level. Additionally, we employ a linear regression method to analyze customer satisfaction scores and inventory costs based on variations in lead time and demand. To verify the effectiveness of the proposed framework, we compared safety stock levels obtained by the regression equations with those of the conventional method. The numerical experiments demonstrated that the proposed method successfully reduces inventory costs while maintaining the same level of customer satisfaction when lead time increases.

  • PDF