• Title/Summary/Keyword: uncertainty importance

Search Result 279, Processing Time 0.029 seconds

Probabilistic Structure Design of Automatic Salt Collector Using Reliability Based Robust Optimization (신뢰성 기반 강건 최적화를 이용한 자동채염기의 확률론적 구조설계)

  • Song, Chang Yong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.799-807
    • /
    • 2020
  • This paper deals with identification of probabilistic design using reliability based robust optimization in structure design of automatic salt collector. The thickness sizing variables of main structure member in the automatic salt collector were considered the random design variables including the uncertainty of corrosion that would be an inevitable hazardousness in the saltern work environment. The probabilistic constraint functions were selected from the strength performances of the automatic salt collector. The reliability based robust optimum design problem was formulated such that the random design variables were determined by minimizing the weight of the automatic salt collector subject to the probabilistic strength performance constraints evaluating from reliability analysis. Mean value reliability method and adaptive importance sampling method were applied to the reliability evaluation in the reliability based robust optimization. The three sigma level quality was considered robustness in side constraints. The probabilistic optimum design results according to the reliability analysis methods were compared to deterministic optimum design results. The reliability based robust optimization using the mean value reliability method showed the most rational results for the probabilistic optimum structure design of the automatic salt collector.

Risk-informed approach to the safety improvement of the reactor protection system of the AGN-201K research reactor

  • Ahmed, Ibrahim;Zio, Enrico;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.764-775
    • /
    • 2020
  • Periodic safety reviews (PSRs) are conducted on operating nuclear power plants (NPPs) and have been mandated also for research reactors in Korea, in response to the Fukushima accident. One safety review tool, the probabilistic safety assessment (PSA), aims to identify weaknesses in the design and operation of the research reactor, and to evaluate and compare possible safety improvements. However, the PSA for research reactors is difficult due to scarce data availability. An important element in the analysis of research reactors is the reactor protection system (RPS), with its functionality and importance. In this view, we consider that of the AGN-201K, a zero-power reactor without forced decay heat removal systems, to demonstrate a risk-informed safety improvement study. By incorporating risk- and safety-significance importance measures, and sensitivity and uncertainty analyses, the proposed method identifies critical components in the RPS reliability model, systematically proposes potential safety improvements and ranks them to assist in the decision-making process.

A Study of Nursing Students' Spiritual Care Experiences (간호 대학생의 영적 간호 경험 분석)

  • Koh, Myung-Suk
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.9 no.2
    • /
    • pp.175-185
    • /
    • 2003
  • The purpose: This study was to describe the spiritual nursing care experiences of nursing students who were in a university, Seoul, Korea. Method: This study is based on descriptive analysis of case studies that were submitted by nursing students. Nursing students were 64 person who were sophomores in a university of the year 2000, 2001. Results: 1. The problems that students report for their subjects were: Loss of self-confidence, body image complex, health status problems, maladaptability, economic problems of home, guilty feeling, problems with dating, loneliness, uncertainty of their future, faith problem, accountability, stress and apart from intimate friends. 2. The methods which students use to solve the subjects's problems were: prayer with subjects, use the Scripture, conversation, meet frequently, listening, frequent phone call, explore problem solving methods together, write letters or E-mails, present with books or music CD etc. 3. After the students have experienced spiritual nursing care they feel that: satisfaction, lack of knowledge of spiritual care, understanding the importance of spiritual nursing care make a new resolution for others, understanding the importance of listening, understanding the power of prayer, the need of Bible study. Conclusion: Maintaining spiritual wellness is a important as maintaining physical fitness and essential for optimal well being. Therefore educating nursing students in developing and maintaining spiritual wellness is essential for the patient to achieve holism.

  • PDF

Strategies of A Potential Importance, Making Lead-Free Piezoceramics Truly Alternative to PZTs

  • Kim, Hwang-Pill;Ahn, Chang Won;Hwang, Younghun;Lee, Ho-Yong;Jo, Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.86-95
    • /
    • 2017
  • Active search for lead-free piezoceramics over the last decade has harvested a considerable amount of achievements both in theory and in practice. Few would deny that those achievements are highly beneficial, but agree that this quest of developing the lead-free piezoceramics in replace for PZTs is successfully completed. Nevertheless, few would clearly state where this quest should be directed in our next move. A source of this uncertainty may originate from the fact that it is still not clear how good is good enough to beat PZTs. In this short review, we analyzed the existing literature data to clearly locate the current state of the art of lead-free piezoceramics in comparison to PZT-based piezoceramics. Four strategies of a potential importance were suggested and discussed to help researchers plan and design their future research on lead-free piezoceramics with a recently reported exemplary work.

A Research on the Vehicle Routing Problem in the Disaster Scene (재난 현장의 구호 자원 운송 차량 경로에 관한 연구)

  • Han, Sumin;Jeong, Hanil;Kim, Kidong;Park, Jinwoo
    • Korean Management Science Review
    • /
    • v.33 no.1
    • /
    • pp.101-117
    • /
    • 2016
  • In 2000s, incidence of natural disaster is increasing continuously. Therefore, the necessity of research on the effective disaster response is emphasized. Korea is not safe from natural disaster. Natural disasters like torrential downpours, typhoons have occurred more frequently than before. In addition disasters like droughts and MERS has also occurred. Therefore, needs for effective systems and algorithms to respond disaster are increased. This study covers the vehicle routing problem for effective logistics in disaster situations caused by natural disasters. The emergency vehicle route problem has different property from the general vehicle route problem. It has the property of the importance of deadline, the uncertain and dynamic demand information, and the uncertainty in information transfer. In this study, a solution that focused on the importance of deadline. In this study, the heuristic solution using the genetic algorithm are suggested. Finally the simulation experiment which reflects the actual environment are conducted to verify the performance of the solution.

A novel reliability analysis method based on Gaussian process classification for structures with discontinuous response

  • Zhang, Yibo;Sun, Zhili;Yan, Yutao;Yu, Zhenliang;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.771-784
    • /
    • 2020
  • Reliability analysis techniques combining with various surrogate models have attracted increasing attention because of their accuracy and great efficiency. However, they primarily focus on the structures with continuous response, while very rare researches on the reliability analysis for structures with discontinuous response are carried out. Furthermore, existing adaptive reliability analysis methods based on importance sampling (IS) still have some intractable defects when dealing with small failure probability, and there is no related research on reliability analysis for structures involving discontinuous response and small failure probability. Therefore, this paper proposes a novel reliability analysis method called AGPC-IS for such structures, which combines adaptive Gaussian process classification (GPC) and adaptive-kernel-density-estimation-based IS. In AGPC-IS, an efficient adaptive strategy for design of experiments (DoE), taking into consideration the classification uncertainty, the sampling uniformity and the regional classification accuracy improvement, is developed with the purpose of improving the accuracy of Gaussian process classifier. The adaptive kernel density estimation is introduced for constructing the quasi-optimal density function of IS. In addition, a novel and more precise stopping criterion is also developed from the perspective of the stability of failure probability estimation. The efficiency, superiority and practicability of AGPC-IS are verified by three examples.

Identification of Uncertainty on the Reduction of Dead Storage in Soyang Dam Using Bayesian Stochastic Reliability Analysis (Bayesian 추계학적 신뢰도 기법을 이용한 소양강댐 퇴사용량 감소의 불확실성 분석)

  • Lee, Cheol-Eung;Kim, Sang Ug
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.3
    • /
    • pp.315-326
    • /
    • 2013
  • Despite of the importance on the maintenance of a reservoir storage, relatively few studies have addressed the stochastic reliability analysis including uncertainty on the decrease of the reservoir storage by the sedimentation. Therefore, the stochastic gamma process under the reliability framework is developed and applied to estimate the reduction of the Soyang Dam reservoir storage in this paper. Especially, in the estimation of parameters of the stochastic gamma process, the Bayesian MCMC scheme using informative prior distribution is used to incorporate a wide variety of information related with the sedimentation. The results show that the selected informative prior distribution is reasonable because the uncertainty of the posterior distribution is reduced considerably compared to that of the prior distribution. Also, the range of the expected life time of the dead storage in Soyang Dam reservoir including uncertainty is estimated from 119.3 years to 183.5 years at 5% significance level. Finally, it is suggested that the improvement of the assessment strategy in this study can provide the valuable information to the decision makers who are in charge of the maintenance of a reservoir.

Radiological Risk Assessment for $^{99m}Tc$ Generator using Uncertainty Analysis (불확실성 분석을 이용한 $^{99m}Tc$ 발생기 사용의 방사선위험도 평가)

  • Jang, H.K.;Kim, J.Y.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.129-139
    • /
    • 2004
  • Recently, much attentions are paid to the risk associated with increased uses of medium size radiation sources in medical and industrial fields. In this study, radiation risks to the worker and to the general public due to $^{99m}Tc$ generator were assessed for both normal and accident conditions. Based on the event tree technique, exposure scenarios for various situations were derived. Uncertainty analysis based on the Monte-Carlo technique was applied to the risk assessment for workers and members of the public in the vicinity of the work place. In addition, sensitivity analysis was performed on each of the five independent input parameters to identify importance of the parameters with respect to the resulting risk. Because the frequencies of normal tasks are fat higher than those of accidents, the total risk associated with normal tasks were higher than the accident risk. The annual dose due to normal tasks were $0.6mSv\;y^{-1}$ for workers and $0.014mSv\;y^{-1}$ for public, while in accident conditions $3.96mSv\;y^{-1}\;and\;0.0016mSv\;y^{-1}$, respectively. Uncertainty range of accident risk was higher by 10 times than that of normal risk. Sensitivity analysis revealed that source strength, working distance and working time were crucial factors affecting risk. This risk analysis methodology and its results will contribute to establishment of risk-informed regulation for medium and large radioactive sources.

Power Generation Cost Comparison of Nuclear and Coal Power Plants in Year 2001 under Future Korean Environmental Regulations -Sensitivity and Uncertainty Analysis- (미래의 한국의 환경규제여건에 따른 2001년도의 원자력과 석탄화력 발전단가비교 -민감도와 불확실도 분석-)

  • Lee, Byong-Whi;Oh, Sung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.18-31
    • /
    • 1989
  • To analyze the impact of air pollution control on electricity generation cost, a computer program was developed. POGEN calculates levelized discounted power generation cost including additional air pollution control cost for coal power plant. Pollution subprogram calculates total capital and variable costs using governing equations for flue gas control. The costs are used as additional input for levelized discounted power generation cost subprogram. Pollution output for Rue Gas Desulphurization direct cost was verified using published cost data of well experienced industrialized countries. The power generation costs for the year 2001 were estimated by POGEN for three different regulatory scenarios imposed on coal power plant, and by levelized discounted power generation cost subprogram for nuclear power. Because of uncertainty expected in input variables for future plants, sensitivity and uncertainty analysis were made to check the importance and uncertainty propagation of the input variables using Latin Hypercube Sampling and Multiple Least Square method. Most sensitive parameter for levelized discounted power generation cost is discount rate for both nuclear and coal. The control cost for flue gas alone reaches additional 9-11 mills/kWh with standard deviation less than 1.3 mills/kWh. This cost will be nearly 20% of power generation cost and 40% of one GW capacity coal power plant investment cost. With 90% confidence, the generation cost of nuclear power plant will be 32.6-51.9 mills/kWh, and for the coal power plant it will be 45.5-50.5 mills/kWh. Nuclear is favorable with 95% confidence under stringent future regulatory requirement in Korea.

  • PDF

Segmented Douglas-Peucker Algorithm Based on the Node Importance

  • Wang, Xiaofei;Yang, Wei;Liu, Yan;Sun, Rui;Hu, Jun;Yang, Longcheng;Hou, Boyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1562-1578
    • /
    • 2020
  • Vector data compression algorithm can meet requirements of different levels and scales by reducing the data amount of vector graphics, so as to reduce the transmission, processing time and storage overhead of data. In view of the fact that large threshold leading to comparatively large error in Douglas-Peucker vector data compression algorithm, which has difficulty in maintaining the uncertainty of shape features and threshold selection, a segmented Douglas-Peucker algorithm based on node importance is proposed. Firstly, the algorithm uses the vertical chord ratio as the main feature to detect and extract the critical points with large contribution to the shape of the curve, so as to ensure its basic shape. Then, combined with the radial distance constraint, it selects the maximum point as the critical point, and introduces the threshold related to the scale to merge and adjust the critical points, so as to realize local feature extraction between two critical points to meet the requirements in accuracy. Finally, through a large number of different vector data sets, the improved algorithm is analyzed and evaluated from qualitative and quantitative aspects. Experimental results indicate that the improved vector data compression algorithm is better than Douglas-Peucker algorithm in shape retention, compression error, results simplification and time efficiency.