Bootstrap methods is the computer-based resampling method that estimates the standard errors and confidence intervals of summary statistics using the plug-in principle for assessing the accuracy or uncertainty of statistical estimates, and the BCa method among the Bootstrap methods is known much superior to other Bootstrap methods in respect of the standards of statistical validation. Therefore this study suggests the method of the representation and treatment of uncertainty in flood risk assessment and water resources planning from the construction and application of rainfall frequency analysis model considersing the uncertainty based on the nonparametric BCa method among the Bootstrap methods for the assessement of the estimation of probability rainfall and the effect of uncertainty considering the uncertainty of the parameter estimation of probability in the rainfall frequency analysis that is the most fundamental in flood risk assessement and water resources planning.
It is well known that exposure to high level of PM (particulate matter) can adversely affect human health. However, little is known about health burden of PM considering the relationship, exposed level of PM, and health level in local communities. And, there is scarcely methodical assessment of uncertainty for application to policies of these assessment results. The scope of this study is divided into two parts: firstly to estimate the death burden of PM10 (particulate matter less then $10{\mu}m$ in diameter) in Seoul metropolitan region, and secondly to evaluate potential uncertainties in these estimates. To estimate the death burden of PM10 in Seoul metropolitan region from 2005~2010, we firstly assessed the relationship between daily mean PM10 and daily death counts in Seoul from 2000~2010, and calculated the death burden of PM10 using BenMAP (Environmental Benefits Mapping and Analysis Program). After that, we identified and characterized uncertainties to substantially influence the results of death burden. The daily mortality risk was increased 1.000227 times (p-value/0.001) associated with $1{\mu}g/m^3$ increase of daily mean PM10 for all ages population, Seoul. And, death burdens of PM10 in Seoul metropolitan region were estimated from 5.51 in 2005 to 5.12 in 2010 per 100,000 people. Finally, we categorized context, model, and input uncertainty and characterized these uncertainties in three dimensions (i.e. location, level, and nature) using uncertainty typology. In our study, we argue that uncertainties need to be identified, assessed, reported and interpreted in order for assessment results to adequately support decision making, such as the establishment of air quality standards based on health burden of air quality.
Objectives In South Korea, health insurance data are used as material for the health insurance of national whole subject. In general, health insurance data could be useful for estimating prevalence or incidence rate that is representative of the actual value in a population. The purpose of this study was to apply the concept of episode of care (EoC) in the utilization of health insurance data in the field of environmental epidemiology and to propose an improved methodology through an uncertainty assessment of disease course and outcome. Methods In this study, we introduced the concept of EoC as a methodology to utilize health insurance data in the field of environmental epidemiology. The characterization analysis of the course and outcome of applying the EoC concept to health insurance data was performed through an uncertainty assessment. Results The EoC concept in this study was applied to heat stroke (International Classification of Disease, 10th revision, code T67). In the comparison of results between before and after applying the EoC concept, we observed a reduction in the deviation of daily claims after applying the EoC concept. After that, we categorized context, model, and input uncertainty and characterized these uncertainties in three dimensions by using uncertainty typology. Conclusions This study is the first to show the process of constructing episode data for environmental epidemiological studies by using health insurance data. Our results will help in obtaining representative results for the processing of health insurance data in environmental epidemiological research. Furthermore, these results could be used in the processing of health insurance data in the future.
An uncertainty assessment for precipitation datasets simulated by Atmosphere-Ocean Coupled General Circulation Model (AOGCM) is conducted to provide reliable climate scenario over East Asia. Most of results overestimate precipitation compared to the observational data (wet bias) in spring-fall-winter, while they underestimate precipitation (dry bias) in summer in East Asia. Higher spatial resolution model shows better performances in simulation of precipitation. To assess the uncertainty of spatiotemporal precipitation in East Asia, the cyclostationary empirical orthogonal function (CSEOF) analysis is applied. An annual cycle of precipitation obtained from the CSEOF analysis accounts for the biggest variability in its total variability. A comparison between annual cycles of observed and modeled precipitation anomalies shows distinct differences: 1) positive precipitation anomalies of the multi-model ensemble (MME) for 20 models (thereafter MME20) in summer locate toward the north compared to the observational data so that it cannot explain summer monsoon rainfalls across Korea and Japan. 2) The onset of summer monsoon in MME20 in Korean peninsula starts earlier than observed one. These differences show the uncertainty of modeled precipitation. Also the comparison provides the criteria of annual cycle and correlation between modeled and observational data which helps to select best models and generate a new MME, which is better than the MME20. The spatiotemporal deviation of precipitation is significantly associated with lower-level circulations. In particular, lower-level moisture transports from the warm pool of the western Pacific and corresponding moisture convergence significantly are strongly associated with summer rainfalls. These lower-level circulations physically consistent with precipitation give insight into description of the reason in the monsoon of East Asia why behaviors of individually modeled precipitation differ from that of observation.
It is now generally known that dynamical climate modeling outputs include systematic biases in reproducing the properties of atmospheric variables such as, preciptation and temerature. There is thus, general consensus among the researchers about the need of bias-correction process prior to using climate model results especially for hydrologic applications. Among the number of bias-correction methods, distribution (e.g., cumulative distribution fuction, CDF) mapping based approach has been evaluated as one of the skillful techniques. This study investigates the uncertainty of using various CDF mapping-based methods for bias-correciton in assessing regional climate change Impacts. Two different dynamicailly-downscaled Global Circulation Model results (CCSM and GFDL under ARES4 A2 scenario) using Regional Spectial Model for retrospective peiod (1969-2000) and future period (2039-2069) were collected over the west central Florida. Total 12 possible methods (i.e., 3 for developing distribution by each of 4 for estimating biases in future projections) were examined and the variations among the results using different methods were evaluated in various ways. The results for daily temperature showed that while mean and standard deviation of Tmax and Tmin has relatively small variation among the bias-correction methods, monthly maximum values showed as significant variation (~2'C) as the mean differences between the retrospective simulations and future projections. The accuracy of raw preciptiation predictions was much worse than temerature and bias-corrected results appreared to be more significantly influenced by the methodologies. Furthermore the uncertainty of bias-correction was found to be relevant to the performance of climate model (i.e., CCSM results which showed relatively worse accuracy showed larger variation among the bias-correction methods). Concludingly bias-correction methodology is an important sourse of uncertainty among other processes that may be required for cliamte change impact assessment. This study underscores the need to carefully select a bias-correction method and that the approach for any given analysis should depend on the research question being asked.
This study was carried out to evaluate the uncertainty in the analysis of menthol content from the mentholated cigarette. Menthol in the sample cigarette was extracted with methanol containing an anethole as an internal standard, and then analyzed by gas chromatography. As the sources of uncertainty associated with the analysis of menthol, were the following points tested, such as the weighing of sample, the preparation of extracting solution, the pipetting of extracting solution into the sample, the preparation of standard solution, the precision of GC injections for standard & sample solution, the GC response factor of standard solution, the reproducibility of menthol analysis, and the determination of water content in tobacco, etc. For calculating the uncertainties, type A of uncertainty was evaluated by the statistical analysis of a series of observation, and type B by the information based on supplier's catalogue and/or certificated of calibration. Sources of uncertainty were subsequently included and mathematically combined with the uncertainty arising from the assessment of accuracy to provide the overall uncertainty. It was shown that the main source of uncertainty came from the errors in the reproducibility of menthol and water determination, the purity of menthol reference material in the preparation of standard solution, and the precision of GC injections for sample solution. The errors in sample weighing and volume measurement contributed relatively little to the overall uncertainty. The expanded uncertainty in the mentholated cigarettes, Korean and American brand, at 0.95 level of statistical confidence was $\pm$0.06 and $\pm$0.07 mg/g for a menthol content of 1.89 and 2.32 mg/g, respectively.
The estimation of key soil properties and subsequent quantitative assessment of the associated uncertainties has always been an important issue in geotechnical engineering. It is well recognized that soil properties vary spatially as a result of depositional and post-depositional processes. The stochastic nature of spatially varying soil properties can be treated as a random field. A practical statistical approach that can be used to systematically model various sources of uncertainty is presented in the context of reliability analysis of slope stability Newly developed expressions for probabilistic characterization of soil properties incorporate sampling and measurement errors, as well as spatial variability and its reduced variance due to spatial averaging. Reliability analyses of the probability of slope failure using the different statistical representations of soil properties show that the incorporation of spatial correlation and conditional simulation leads to significantly lower probability of failure than obtained using simple random variable approach.
The change of precipitation and temperature due to the global. warming eventually caused the variation of water availability in terms of potential evapotranspiration, soil moisture, and runoff. In this reason national long-term water resource planning should be considered the effect of climate change. Study of AOGCM-based scenario to proposed the plausible future states of the climate system has become increasingly important for hydrological impact assessment. Future climate changes over East Asia are projected from the coupled atmosphere-ocean general circulation model (AOGCM) simulations based on Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 and B2 scenarios using multi-model ensembles (MMEs) method (Min et al. 2004). MME method is used to reduce the uncertainty of individual models. However, the uncertainty increases are larger over the small area than the large area. It is demonstrated that the temperature increases is larger over continental area than oceanic area in the 21st century.
In order to estimate parameter uncertainty of hydrological models, the consideration of the likelihood functions which provide reliable parameters of model is necessary. In this study, the Bayesian Markov Chain Monte Carlo (MCMC) method with informal likelihood functions is used to analyze the uncertainty of parameters of the SURR model for estimating the hourly streamflow of Gunnam station of Imjin basin, Korea. Three events were used to calibrate and one event was used to validate the posterior distributions of parameters. Moreover, the performance of four informal likelihood functions (Nash-Sutcliffe efficiency, Normalized absolute error, Index of agreement, and Chiew-McMahon efficiency) on uncertainty of parameter is assessed. The indicators used to assess the uncertainty of the streamflow simulation were P-factor (percentage of observed streamflow included in the uncertainty interval) and R-factor (the average width of the uncertainty interval). The results showed that the sensitivities of parameters strongly depend on the likelihood functions and vary for different likelihood functions. The uncertainty bounds illustrated the slight differences from various likelihood functions. This study confirms the importance of the likelihood function selection in the application of Bayesian MCMC to the uncertainty assessment of the SURR model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.