• 제목/요약/키워드: unbonded prestress

검색결과 20건 처리시간 0.02초

규격별 비부착 긴장재의 극한응력식에 대한 비교 연구 (A Comparitive Study on the Ultimate Tendon Stress of Unbonded Tendon According to Various Codes)

  • 유성원;서정인
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.501-506
    • /
    • 2002
  • The unbonded prestressed concrete(PSC) members exhibit very different structural behavior from that of bonded PSC members because of having different tendon stress increment. Recently, AASHTO changed the provision of ultimate tendon stress with unbonded tendons, because some researches tried to improve the provision of ultimate tendon stress with unbonded tendons. The purpose of the present study is to compare various Codes with the ultimate failure stresses of prestressing(PS) steels for the unbonded PSC members. To this end, Some national Codes have been collected and analyzed. A series of major influencing variables have been included in the analysis. It was found that the span-depth ratio, neutral axis depth-effective depth ratio, concrete compressive strength, effective prestress, and prestressing steel ratio have great influence on the ultimate failure stress of PS steel in unbonded PSC members. The Comparison indicates that existing formulas including ACI and domestic Code's equations shows some unwarranties. The present study allows more realistic analysis and design of prestressed concrete structures with internal unbonded tendons.

  • PDF

비부착 긴장재의 응력에 영향을 미치는 중요변수에 대한 실험연구 (Experimental Examination of Influential Variables on Unbonded Tendon Stresses)

  • 임재형;문정호;이리형
    • 콘크리트학회지
    • /
    • 제11권1호
    • /
    • pp.209-219
    • /
    • 1999
  • 본 연구와 관련한 이전의 연구에서는 기존연구에서 제시한 설계식 및 현행의 ACI 규준식에 대한 문제점을 분석하고 그 결과에 의해 비부착 긴장재의 극한응력을 평가할 수 있는 새로운 설계식을 제시하였다. 따라서 본 연구에서는 설계식에서 제안된 주요변수가 비부착 긴장재의 응력에 미치는 영향을 분석하기 위하여 총 14개의 실험체를 제작하여 실험을 수행하였다. 실험에 사용된 변수는 유효프리스트레스, 콘크리트 강도, 긴장재 양, 일반철근 양, 작용하중 형태, 스팬/춤 비 등이다. 실험결과에서는 유효프리스트레스가 증가하면 증가할수록, 그리고 긴장재 및 일반철근의 양이 증가할수록 긴장재의 응력증가량은 감소함을 알았다. 그리고 콘크리트 강도 및 작용하중의 형태도 긴장재의 응력에 영향을 미치는 것으로 나타났다. 또한 스팬/춤 비가 높은 경우에 현행의 ACI 규준식과는 상이하게 스팬/춤 비가 긴장재의 응력에 미치는 영향이 미미미한 것으로 나타났다.

비부착 긴장재를 갖는 프리스트레스트 콘크리트 보에서 긴장재 응력의 과대평가 (Overestimation of Ultimate Tendon Stress in a Prestressed Concrete Beam with Unbonded Tendons)

  • 이종윤;임재형;문정호;신경재
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.73-81
    • /
    • 1999
  • The present study is to examine the ACI code equations for computing the unbonded tendon stress at flexural failure of prestressed beams. The equations examined for their validity are Eq. 18-4 and Eq. 18-5 of the ACI 318-95. Since the possibility of overestimation was expected with the equations, a numerical study, first, was carried out with influential variables included. From this study, it was found that amount of reinforcements, effective prestress, location of tendons, and loading type may affect the overestimation of the unbonded tendon stress. Then, an experimental study was carried out with those variables. A total of 8 specimens was tested to prove the theoretical findings as well as the effect of those variables. As a result. it was proven that the ACI Code equations can overestimate significantly the unbonded tendon stress for certain cases.

극한하중상태에서 비부착 긴장재의 응력평가에 관한 실험연구 (Experimental Study on Stress Evaluation Study on Stress Evaluation of Unbonded Tendon under Ultimate Load)

  • 임재형;문정호;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.519-524
    • /
    • 1998
  • The current study is a part of series of research about the evaluation method of the unbonded tendon stress in prestressed concrete member at flexural failure. As the experimental study, a test program with 14 beams and slabs was planed to identify the contribution of each important variable. The variables are (1) the effective prestress, (2) the concrete strength, (3) the amount of tendons (4) the amount of bonded reinforcements, (5) the loading type, (6) the span/depth ratio. It was found that the tendon stress increment decreases as the effective prestress increases. Also, the contributions of concrete strength, amount of tendons, bonded reinforcements, and loading type were observed to affect on tendon stresses. However, the tendon stress increments were minimal at high values of span/depth in contrast with the ACI Code.

  • PDF

Prestress force effect on fundamental frequency and deflection shape of PCI beams

  • Bonopera, Marco;Chang, Kuo-Chun;Chen, Chun-Chung;Sung, Yu-Chi;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • 제67권3호
    • /
    • pp.255-265
    • /
    • 2018
  • The prestress force effect on the fundamental frequency and deflection shape of Prestressed Concrete I (PCI) beams was studied in this paper. Currently, due to the conflicts among existing theories, the analytical solution for properly considering the structural behavior of these prestressed members is not clear. A series of experiments were conducted on a large-scale PCI beam of high strength concrete with an eccentric straight unbonded tendon. Specifically, the simply supported PCI beam was subjected to free vibration and three-point bending tests with different prestress forces. Subsequently, the experimental data were compared with analytical results based on the Euler-Bernoulli beam theory. It was proved that the fundamental frequency of PCI beams is unaffected by the increasing applied prestress force, if the variation of the initial elastic modulus of concrete with time is considered. Vice versa, the relationship between the deflection shape and prestress force is well described by the magnification factor formula of the compression-softening theory assuming the secant elastic modulus.

Flexural behavior model for post-tensioned concrete members with unbonded tendons

  • Kim, Kang Su;Lee, Deuck Hang
    • Computers and Concrete
    • /
    • 제10권3호
    • /
    • pp.241-258
    • /
    • 2012
  • The need for long-span members increases gradually in recent years, which makes issues not only on ultimate strength but also on excessive deflection of horizontal members important. In building structures, the post-tension methods with unbonded tendons are often used for long-span members to solve deflection problems. Previous studies on prestressed flexural members with unbonded tendons, however, were mostly focused on the ultimate strength. For this reason, their approaches are either impossible or very difficult to be implemented for serviceability check such as deflection, tendons stress, etc. Therefore, this study proposed a flexural behavior model for post-tensioned members with unbonded tendons that can predict the initial behavior, before and after cracking, service load behavior and ultimate strength. The applicability and accuracy of the proposed model were also verified by comparing with various types of test results including internally and externally post-tensioned members, a wide range of reinforcement ratios and different loading patterns. The comparison showed that the proposed model very accurately estimated both the flexural behavior and strength for these members. Particularly, the proposed model well reflected the effect of various loading patterns, and also provided good estimation on the flexural behavior of excessively reinforced members that could often occur during reinforcing work.

비부착 탄소섬유판 긴장재를 갖는 철근 콘크리트 보의 휨거동 (Flexural behavior of RC beams with unbonded prestressing CFRP laminates)

  • 박종섭;박영환;정우태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.258-261
    • /
    • 2006
  • This study investigates the flexural behavior and strengthening performance of RC beams with unbonded prestressing CFRP laminates through static bending tests. The aluminum anchorage system has been developed in tins study and successfully applied to the test specimens. The prestressing level of CFRP laminatehas was 0 %, 20 %, 30% and 50 % of its tensile strength. Experimental results revealed that RC beams with unbonded prestressing CFRP laminates showed increased crack load and yield load according to the level of prestress. It has also been observed that the length of the CFRP laminates does not have significant effect on the maximum load.

  • PDF

Flexural behavior and flexural capacity prediction of precast prestressed composite beams

  • Hu, Manxin;Yang, Yong;Yu, Yunlong;Xue, Yicong
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.225-238
    • /
    • 2022
  • In order to improve the cracking resistance of reinforced concrete and give full play to the advantages of prefabricated assembly structure in construction, prestressed reinforced concrete composite beam (PRCC) is proposed. Through the bending static test of seven I-shaped beam specimens, the bending failure modes and bearing capacity of PRCC and reinforced concrete composite beam are compared and analyzed, and the effects of prestress size, prestressed reinforcement layout and prestress application sequence on the flexural behavior of PRCC beams are studied. The results show that the cracking load and ultimate load of PRCC beams significantly increased after prestressing, and prestressed tendons can effectively control the crack development. With the increase of prestressing degree, the deformation resistance and bending stiffness of PRCC beams are increased. The application sequence of prestress has little influence on the mechanical properties of PRCC beams. The crack width, stiffness and normal section bearing capacity of PRCC beam are analyzed, and the calculated results are in good agreement with the experimental results.

Flexural Behavior of Post-tensioned Lightweight Concrete Continuous One-Way Slabs

  • Yang, Keun-Hyeok;Lee, Yongjei;Joo, Dae-Bong
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.425-434
    • /
    • 2016
  • In this experimental study, six post-tensioned light weight concrete (LWC) continuous one-way slabs were tested in the following manner: the flexural behaviors of the members were compared with the calculations from the existing standards. The test also examined the effect of prestressing in tendons and proper prestress conditions to reduce the deflection and crack width, and to enhance the flexural capacity and ductility of LWC members. Flexural capacity and stress increments in unbonded tendons of the specimens were compared with those of the simply supported normal and the lightweight concrete members. The suggested safety limit from the American Concrete Institute (ACI) regulation on the maximum capacity and the stress incremental in unbonded tendons were also compared with the test results under simple and continuous supporting conditions.

부착 또는 비부착된 탄소판으로 긴장 보강한 RC보의 보강성능 (Strengthening performance of RC beams strengthened by bonded or unbonded prestressed CFRP laminates)

  • 박종섭;박영환;유영준;정우태;강재윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.279-282
    • /
    • 2005
  • This study investigates the flexural behavior and strengthening performance of RC beams strengthened by prestressed CFRP laminates through static bending tests. Tests on RC beams strengthened with prestressed CFRP laminates were carried out for both cases where the CFRP laminates were bonded or not and the corresponding effects on the strengthening performances of RC beams were examined. Experimental results revealed that RC beams strengthened with prestressed CFRP laminates presented increased crack load and yield load according to the level of prestress. Premature debonding occurred before the RC beam strengthened with bonded prestressed CFRP laminates reaches the maximum load, and the specimen presented similar behavior to the one exhibited by the specimen with unbonded laminates.

  • PDF