• Title/Summary/Keyword: unbalance force

Search Result 108, Processing Time 0.025 seconds

On-line Balancing of a Ultra-high speed Rotor with Residual Unbalance (자기베어링을 이용한 잔류질량불균형이 존재하는 초고속 회전체의 온라인 밸런싱)

  • 송상호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.51-57
    • /
    • 1998
  • In order to minimize vibration problems of rotating machinery rotors have been assembled through balancing machines. Since perfect balancing is impossible, residual unbalances cause serious vibration while the rotor is in high speed region. To minimize unbalance effects of magnetic bearing systems (AMB) during rotation on-line balancing methodology was studied. Unbalances were considered as disturbances of the system. The disturbance observer was used to estimate unbalance force from measurable state and input variables. Balancing inputs computed according to LQR and outputs of the observer were applied to eliminate unbalances during high speed rotation of the AMB. the effectiveness of the on-line balancing was verified through numerical simulations.

  • PDF

A Study on Development of Railway Reducer for Low Noise/Vibration (소음/진동을 고려한 철도 감속기 개발에 대한 연구)

  • 이형우;박노길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2004
  • A dynamic model of railway reducer is developed by the lumped parameter method. The model accounts for shafts, bearings flexibilities, gyroscopic effects and the force couplings among the transverse and torsion motions due to gearing. Vibration/noise analysis as well as strength of gear teeth, and bearing life are considered. Excitation forces of railway reduction are considered as the mass unbalance of the rotors, misalignment and a function of gear transmission error which comes from the modified tooth surface. A campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors, misalignment and the transmitted errors of the gearing are considered, shows that, at the operating speed, there are not the critical speed. The program which can be used to analyze and predict vibration/noise characteristics by mass unbalance, misalignment and gear transmission error of railway reduction is developed with this system model.

Kinematic Analysis and Dynamic Balancing Technique in a Link-Motion Mechanism (링크모션 메커니즘의 기구학적 분석 및 다이나믹 발란싱 테크닉)

  • Suh, Jin-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.498-502
    • /
    • 2004
  • In a link-motion mechanism, numerous links are interconnected and each link executes a constrained motion at a high speed. Due to the complicated constrained motions of the constituent links, dynamic unbalance forces and moments are generated and transmitted to the main frame. Therefore unwanted vibration is produced. This degrades productivity and precise work. Based on constrained multi-body dynamics, the kinematic analysis is carried out to enable design changes to be made. This will provide the fundamental information for significantly reducing dynamic unbalance forces and moments which are transmitted to the main frame. In this work, a link-motion punch press is selected as an example of a link-motion mechanism. To calculate the mass and inertia properties of every link comprising a link-motion punch press, 3-dimensional CAD software is utilized. The main issue in this work is to eliminate the first-order unbalance force and moment in a link-motion punch press. The mass, moment of inertia link length, location of the mass center in each link have a great impact on the degree of dynamic balancing which can be achieved maximally. Achieving good dynamic balancing in a link motion punch press is quite essential fur reliable operation at high speed.

  • PDF

Rotor Dynamics Analysis of a Spindle System for a High speed Grinding Machine (고속 연삭기 주축 시스템의 회전체 역학 해석)

  • 최영휴
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.714-719
    • /
    • 2000
  • This paper describes a transfer matrix approach to analyze the dynamics of a high sped flexible rotor system supported at 2 positions by five ceramic bearings. The rotor system is modelled as lumped parameters in which many factors are considered not only lumped inertia or mass, bending moment, shear force but also gyroscopic effect and unbalance. The equation of motion is derived in the transfer matrix form, from which the eigenvalues equation is also derived. The transfer natural frequencies and modes. The eigenvalues, eigenmodes, campbell diagram, whirling critical speed, whirling modes, and the response of unbalance are calculated and discussed.

  • PDF

Analysis of a Magnetic Field According to Eccentricity in Brushless DC M01 (BLDC 모터에서의 편심에 따른 자계특성 해석)

  • Jang, S.M.;Yoon, I.K.;Lee, S.H.;Choi, S.K.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.706-708
    • /
    • 2002
  • Vibration, giving rise to acoustical noise, is an important index of motor performance. The unbalance force due to rotor eccentricity caused by manufacturing imprecision or bearing defects is one possible source of excitation to vibration. With the advent of new high-energy magnetic material together with high precision motor applications, magnetic sources of vibration are becoming more serious. This paper introduces two types of high-speed slotless permanent magnet (PM) machine for electro-mechanical battery and investigates unbalance force due to static eccentricity with finite element method.

  • PDF

Vibration Analysis of Pump/Turbine and Generator/Motor Rotor System for Pumped Storage Power Stations (양수발전소용 펌프수차${\cdot}$발전기 전동기 축계의 진동해석)

  • Yang, Bo-Suk;Choi, Byung-Gun;Kim, Young-Han;Ha, Hyun-Cheon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.39-45
    • /
    • 1999
  • Pumped-storage power plants pumps the water from the lower reservoir to the upper reservoir using the extra electric power at night and generates electric power in the daytime. Currently it tends to be a high-head large-capacity machine. In this paper, we developed the computer programs for vibration analysis of the pump/turbine and generator/motor rotor system considering electromagnetic force, hydrodynamic unbalance force, dynamic characteristics of guide bearings and add mass of water. This program was verified by applying it to the real model and calculating the critical speed, natural mode and unbalance response.

  • PDF

Vibration Analysis of Rotor Systems Using Finite Dynamic Elements (동적 유한요소에 의한 회전축 계의 진동 해석)

  • 양보석;황형섭
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.467-475
    • /
    • 1997
  • A rotor-bearing system has been investigated, including internal damping and axial torque using finite dynamic elements. A procedure is presented for dynamic modeling of rotor-bearing system which consist of finite dynamic shaft elements, rigid disk, and bearing and seal. A finite dynamic element model including the effects of rotatory inertia, gyroscopic moments, axial force, and axial torque is developed using the frequency dependent shape function. The natural whirl speeds, stability, and unbalance response of rotor system are calculated on several cases and compared with the conventional finite elements.

  • PDF

Dynamic Behavior Analysis of a Crankshaft-Bearing System in Variable Speed Reciprocating Compressor (가변속 왕복동형 압축기 크랭크축-베어링계의 동적 거동 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.426-434
    • /
    • 2001
  • The hermetic reciprocating compressor driven by the BLDC motor rotating with variable speeds, is modelled and analyzed for dynamic characteristics. The governing equations of piston, connecting rod and crank-shaft of the reciprocating compression mechanism and characteristics of driving torque of the motor are obtained. Dynamic behavior of the crankshaft supported on 2 journal bearings is analyzed considering compression load and eccentric unbalance for the 4 rotating speeds of crankshaft. And. reaction forces generated from oil film in the journal bearings are analyzed under transient condition using Reynolds' equation. To take into account the dynamic characteristics depending on the variable rotating speeds, comparison on the dynamic behavior of crank-shaft is made for the 4 operating modes of the compressor. Results show that the magnitude of crankshaft locioperating on the lower rotating speeds is more larger than the higher ones due to reduction of inertia force of the reciprocating piston.

A Study on Modeling of LD Movement and Measurement of Mass Center using Piezoelectric Element (압전소자를 이용한 레이저디스크 이동현상의 모델링과 질량중심의 위치결정에 관한 연구)

  • Song, Hwa-Seop;Hong, Jun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.213-219
    • /
    • 1999
  • Piezoelectric element is deformed by driving voltage pattern. We developed a device of moving LD(laser disk) to use the rapid deformation of piezoelectric element. If driving voltage is changed very rapidly, the difference of acceleration is accurred between spindle motor and LD. To move LD on turn table is attained by utilizing difference of acceleration. This paper describes theoretical and experimental results about the movement of LD and presents to measure the center of mass LD with unbalance force.

  • PDF

Dynamic Analysis of Rotor Eccentricity in Switched Reluctance Motor with Parallel Winding

  • Li, Jian;Choi, Da-Woon;Cho, Yun-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.85-87
    • /
    • 2008
  • This paper presents dynamic characteristics in Switched Reluctance Motor (SRM) with rotor eccentricity and proposes the reduction method of rotor eccentricity effects by the different winding connections. These characteristics investigations are computed by 2D transient magnetic FEM analysis coupled with external circuits. The radial and unbalance magnetic force in the stator, which is the main exciting force of the vibration, is calculated using Maxwell stress method and compared with the performance characteristics according to the serial and parallel connections of windings. The influence of winding method counteracting unbalance forces on the rotor vibration behavior is estimated by the current waveforms of the paralleled paths under rotor eccentricity.

  • PDF