• 제목/요약/키워드: ultraviolet absorber

검색결과 17건 처리시간 0.022초

SnS (tin monosulfide) thin films obtained by atomic layer deposition (ALD)

  • Hu, Weiguang;Cho, Young Joon;Chang, Hyo Sik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.305.2-305.2
    • /
    • 2016
  • Tin monosulfide (SnS) is one promising candidate absorber material which replace the current technology based on cadmium telluride (CdTe) and copper indium gallium sulfide selenide (CIGS) for its suitable optical band gap, high absorption coefficient, earth-abundant, non-toxic and cost-effective. During past years work, thin film solar cells based on SnS films had been improved to 4.36% certified efficiency. In this study, Tin monosul fide was obtained by atomic layer deposition (ALD) using the reaction of Tetrakis (dimethylamino) tin (TDMASn, [(CH3)2N]4Sn) and hydrogen sulfide (H2S) at low temperatures (100 to 200 oC). The direct optical band gap and strong optical absorption of SnS films were observed throughout the Ultraviolet visible spectroscopy (UV VIS), and the properties of SnS films were analyzed by sanning Electron Microscope (SEM) and X-Ray Diffraction (XRD).

  • PDF

Risk Assessment of Drometrizole, a Cosmetic Ingredient used as an Ultraviolet Light Absorber

  • Lee, Jae Kwon;Kim, Kyu-Bong;Lee, Jung Dae;Shin, Chan Young;Kwack, Seung Jun;Lee, Byung-Mu;Lee, Joo Young
    • Toxicological Research
    • /
    • 제35권2호
    • /
    • pp.119-129
    • /
    • 2019
  • As the use of cosmetics has greatly increased in a daily life, safety issues with cosmetic ingredients have drawn an attention. Drometrizole [2-(2'-hydroxy-5'-methylphenyl)benzotriazole] is categorized as a sunscreen ingredient and is used in cosmetics and non-cosmetics as a UV light absorber. No significant toxicity has been observed in acute oral, inhalation, or dermal toxicity studies. In a 13-week oral toxicity study in beagle dogs, No observed adverse effect level (NOAEL) was determined as 31.75 mg/kg bw/day in males and 34.6 mg/kg bw/day in females, based on increased serum alanine aminotransferase activity. Although drometrizole was negative for skin sensitization in two Magnusson-Kligman maximization tests in guinea pigs, there were two case reports of consumers presenting with allergic contact dermatitis. Drometrizole showed no teratogenicity in reproductive and developmental toxicity studies in which rats and mice were treated for 6 to 15 days of the gestation period. Ames tests showed that drometrizole was not mutagenic. A long-term carcinogenicity study using mice and rats showed no significant carcinogenic effect. A nail product containing 0.03% drometrizole was nonirritating, non-sensitizing and non-photosensitizing in a test with 147 human subjects. For risk assessment, the NOAEL chosen was 31.75 mg/kg bw/day in a 13-week oral toxicity study. Systemic exposure dosages were 0.27228 mg/kg bw/day and 1.90598 mg/kg bw/day for 1% and 7% drometrizole in cosmetics, respectively. Risk characterization studies demonstrated that when cosmetic products contain 1.0% of drometrizole, the margin of safety was greater than 100. Based on the risk assessment data, the MFDS revised the regulatory concentration of drometrizole from 7% to 1% in 2015. Under current regulation, drometrizole is considered to be safe for use in cosmetics. If new toxicological data are obtained in the future, the risk assessment should be carried out to update the appropriate guidelines.

A Comprehensive Study for Two Damage Sites of Human Hair upon UV-B Damage

  • Song, Sang-Hun;Son, Seongkil;Kang, Nae Gyu
    • Korea Journal of Cosmetic Science
    • /
    • 제2권1호
    • /
    • pp.1-10
    • /
    • 2020
  • Protection mechanisms for skin damage of ultraviolet (UV) absorbers in personal care products for protection against UV are well studied, but not for hair protection. The purpose of this study is to describe and compare the changes of physical property produced in human hair by doses of the UV-B exposure causing protein degradation. To observe the change of physical properties in hair, the experimental intensity of UV-B exposure has been established on the basis of statistical data from official meterological administration as daily one hour sunlight exposure for two weeks. Polysilicone-15, ethylhexyl methoxycinnamate (OMC), and octocrylene were employed for UV-B absorber, and those were treated to hair swatch by rubbing wash through shampoo and conditioner. Bending rigidity displayed kinetically successive reduction at high doses of UV exposure up to the 8,000 s, and exhibited different level at each sample of UV-B absorber. However, the values of Bossa Nova Technologies (BNT) for shinning factor were already saturable at the 2,000 s exposure except that treated with polysilicone-15. The differential scanning calorimetry (DSC) to measure a strength of inner protein produces a successive reduction of enthalpy as like a reduction of bending rigidity upon UV exposure. Surface roughness from lateral force microscope (LFM) acquired immediately after UV exposure show a saturable frictional voltage which has been also found in a saturable BNT data as the time of UV exposure increases. Through researching the DSC and the LFM, shinning of hair was much correlated to the protein damage at the surface, and bending rigidity could be regulated by the protein structural damage inside hair. Therefore, the optimization of efficient strategy for simultaneous prevention of hair protein on the surface and internal hair was required to maintain physical properties against UV.

RF 마그네트론 스퍼터링법으로 성장 된 SnS 박막의 구조적 및 광학적 특성에 대한 증착 압력의 영향 (Influence of Deposition Pressure on Structural and Optical Properties of SnS Thin Films Grown by RF Magnetron Sputtering)

  • 손승익;이상운;손창식;황동현
    • Current Photovoltaic Research
    • /
    • 제8권1호
    • /
    • pp.33-38
    • /
    • 2020
  • Single-phased SnS thin films have been prepared by RF magnetron sputtering at various deposition pressures. The effect of deposition pressure on the structural and optical properties of polycrystalline SnS thin films was studied using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometer. The XRD analysis revealed the orthorhombic structure of the SnS thin films oriented along the (111) plane direction. As the deposition pressure was increased from 5 mTorr to 15 mTorr, the intensity of the peak on the (111) plane increased, and the intensity decreased under the condition of 20 mTorr. The binding energy difference at the Sn 3d5/2 and S 2p3/2 core levels was about 324.5 eV, indicating that the SnS thin film was prepared as a pure Sn-S phase. The optical properties of the SnS thin films indicate the presence of direct allowed transitions with corresponding energy band gap in the rang 1.47-1.57 eV.

태양전지용CuInSe2와 CuGaSe2 흡수층의 전자구조해석을 위한 표면 청정기술 개발 (Development of Surface Cleaning Techniques for Analysis of Electronics Structure in CuInSe2, CuGaSe2 Solar Cell Absorber Layer)

  • 김경환;최형욱;공석현
    • 한국전기전자재료학회논문지
    • /
    • 제18권2호
    • /
    • pp.125-129
    • /
    • 2005
  • Two kinds of physical treatments were examined for the analysis both of intrinsic surface and interior nature of CuInS $e_2$[CIS] and CuGaS $e_2$[CGS] films grown in separated systems. For the first method, a selenium protection layer which was immediately deposited after the growth of the CIS was investigated. The Se cap layer protects CISe surface from oxidation and contamination during the transport under ambient atmosphere. The Se cap was removed by thermal annealing at temperature above 15$0^{\circ}C$. After the decapping treatment at 2$25^{\circ}C$ for 60 min, ultraviolet photoemission and inverse photoemission measurements of the CIS film showed that its valence band maximum(VBM) and conduction band minimum (CBM) are located at 0.58 eV below and 0.52 eV above the Fermi level $E_{F}$, respectively. For the second treatment, an Ar ion beam etching was exploited. The etching with ion kinetic energy $E_{k}$ above 500 eV resulted in broadening of photoemission spectra of core signals and occasional development of metallic feature around $E_{F}$. These degradations were successfully suppressed by decreasing $E_{k}$ below 400 eV. CGS films etched with the beam of $E_{k}$ = 400 eV showed a band gap of 1.7 eV where $E_{F}$ was almost centered.st centered.

RF 마그네트론 스퍼터링법으로 제조한 SnS 박막의 구조적 및 광학적 특성 (Structural and Optical Properties of SnS Thin Films Deposited by RF Magnetron Sputtering)

  • 황동현
    • 한국표면공학회지
    • /
    • 제51권2호
    • /
    • pp.126-132
    • /
    • 2018
  • SnS thin films with different substrate temperatures ($150 {\sim}300^{\circ}C$) as process parameters were grown on soda-lime glass substrates by RF magnetron sputtering. The effects of substrate temperature on the structural and optical properties of SnS thin films were investigated by X-ray diffraction (XRD), Raman spectroscopy (Raman), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and Ultraviolet-visible-near infrared spectrophotometer (UV-Vis-NIR). All of the SnS thin films prepared at various substrate temperatures were polycrystalline orthorhombic structures with (111) planes preferentially oriented. The diffraction intensity of the (111) plane and the crystallite size were improved with increasing substrate temperature. The three major peaks (189, 222, $289cm^{-1}$) identified in Raman were exactly the same as the Raman spectra of monocrystalline SnS. From the XRD and Raman results, it was confirmed that all of the SnS thin films were formed into a single SnS phase without impurity phases such as $SnS_2$ and $Sn_2S_3$. In the optical transmittance spectrum, the critical wavelength of the absorption edge shifted to the long wavelength region as the substrate temperature increased. The optical bandgap was 1.67 eV at the substrate temperature of $150^{\circ}C$, 1.57 eV at $200^{\circ}C$, 1.50 eV at $250^{\circ}C$, and 1.44 eV at $300^{\circ}C$.

자외선 차단 가공에 의한 면직물의 역학적 특성 변화 (Effect of UV-Absorber Treatment on the Mechanical Properties of Cotton Fabrics)

  • Kwon, Young-Ah;Kang, Mi-Jung;Cho, Hyun-Hok
    • 한국의류학회지
    • /
    • 제26권12호
    • /
    • pp.1701-1708
    • /
    • 2002
  • 본 연구의 목적은 자외선 차단 가공 처리 및 자외선 조사처리에 의해 면직물의 역학적 특성 변화를 조사하고 가공제 처리조건에 따른 차이점을 분석하는 것이다. 시료로는 100% 면직물을, 자외선 흡수제로 2,2'-dihydroxy-4,4'-dimethoxy benzophenone을, 첨가제로 Triton X-100, polyethylene glycol 400, MgCl$_2$.6$H_2O$를 사용하였다. 자외선 흡수제 처리는 Atlas Launder-O-meter로 75$^{\circ}C$에서 60분간 흡진법으로 하였다. 미처리 시료 및 처리시료는 모두 xenon 램프에 80시간 동안 노출되었으며, 자외선 조사 전후 시료의 역학적 특성은 KES-F시스템을 사용하여 측정하였다. 본 연구의 결과는 다음과 같이 요약할 수 있다. 자외선 흡수제 처리는 처리 농도에 상관없이 면직물의 선형인장성(LT), 인장레질리언스(RT), 굽힘강성(B), 굽힘이력(2HB), 전단강성(G), 전단이력(2HG5), 표면마찰계수(MIU)등을 증가시켰으며 표면거칠기(SMD)는 감소시켰다. 압축특성은 처리농도의 영향을 받아서 고농도의 자외선 흡수제 처리는 압축특성을 감소시켰으며, 저농도의 처리는 압축특성을 증가시켰다. 자외 선 흡수제 처리는 처리농도에 상관없이 면직물의 fullness/softness를 유의하게 증가시키는 반면 stiffness, crispness및 anti-drape stiffness를 감소시켜서 가공포의 종합태(THV)는 가공 전에 비하여 저하하였다. 자외선 조사는 가공 전 면직물의 경우 B, 2HB, G, 2HG, 2HG5, LC를 감소시켰다. 자외선 조사는 처리농도와 상관없이 가공포의 WT, 굽힘특성 , 전단특성을 감소시켰으며, 저농도의 흡수제 처리포의 경우 SMD를 증가시켰으며, 고농도의 흡수제 처리포의 경우 SMD를 감소시켰다. 자외선 조사는 처리농도와 상관없이 가공포의fullness/softness, stiffness, anti-drape stiffness를 유의하게 감소시켜서 자외선 조사 전 보다 THV가 37% 저하하였고 미 가공포의 THV를 저하율보다는 저하가 낮았다. 자외선 흡수제 처리에 의해 면직물의 태는 가공 전보다 감소하지만, 자외선 흡수제 처리는 자외선 조사에 의한 태 감소율을 낮추는 데 유의 한 효과가 있다.