• Title/Summary/Keyword: ultrathin film

Search Result 106, Processing Time 0.03 seconds

MAGNETIC AND MAGNETO-OPTICAL PROPERTIES OF Co-BASED MULTILAYERED FILMS PREPARED BY ELECTRON-BEAM EVAPORATION

  • Lee, Y.P.;Lee, B.J.;Park, H.K.;Kim, S.K.;Kang, J.S.;Jeong, J.I.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.24-29
    • /
    • 1995
  • The magnetic amd magneto-optical(MO)properties of Co-based multilayered(ML)films are known to vary sensitively according to the manufacturing methods and the film microstructures. Co/Pd and Co/Pt ML films with ultrathin layers of Co were prepared by alternating deposition in an ultrahigh-vacuum physical-vapor-deposition system. The individual layer thicknesses of the samples were estimated making use of the angular positions of x-ray diffraction peaks. The magnetic and MO properties were investigated, and correlated systematically to the structural parameters of the films. A Kerr spectrometer was self-manufactured to measure the MO properties such as Kerr rotation angle, ellipticity and reflectivity. The rms surface roughness was also measured using atomic force microscopy. Some of the samples showed good properties for MO medium, such as large perpendicular magnetic anisotropy and Kerr rotation, and perfect squareness of the magnetic hysteresis loop.

  • PDF

Electrical Characterization of Ultrathin $SiO_2$ Films Grown by Thermal Oxidation in $N_2O$ Ambient ($N_2O$ 분위기에서 열산화법으로 성장시킨 $SiO_2$초박막의 전기적 특성)

  • Gang, Seok-Bong;Kim, Seon-U;Byeon, Jeong-Su;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.63-74
    • /
    • 1994
  • The ultrathin oxide films less than 100$\AA$ were grown by thermal oxidation in $N_2O$ ambient to improve the controllability of thickness, thickness uniformity, process reproducibility and their electrical properties. Oxidation rate was reduced significantly at very thin region due to the formation of oxynitride layer in $N_2O$ ambient and moreover nitridation of the oxide layer was simultaneously accompanied during growth. The nitrogen incorporation in the grown oxide layer was characterized with the wet chemical etch-rate and ESCA analysis of the grown oxide layer. All the oxides thin films grown in $N_2O$, pure and dilute $O_2$ ambients show Fowler-Nordheim electrical conduction. The electrical characteristics of thin oxide films grown in $N_2O$ such as leakage current, electrical breakdown, interface trap density generation due to the injected electron and reliability were better than those in pure or dilute ambient. These improved properties can be explained by the fact that the weak Si-0 bond is reduced by stress relaxation during oxidation and replacement by strong Si-N bond, and thus the trap sites are reduced.

  • PDF

Layer-by-Layer Self-Assembled Multilayer Film Composed of Polyaniline, Graphene Oxide, and Phytic Acid for Supercapacitor Application (슈퍼커패시터 활용성 자가조립된 폴리아닐린, 그래핀 옥사이드 그리고 피트산으로 구성된 다층 초박막)

  • Lee, Myungsup;Hong, Jong-Dal
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.1
    • /
    • pp.36-44
    • /
    • 2015
  • This article describes synthesis and electrochemical properties of layer-by-layer self-assembled multilayer film composed of polyaniline (PANi), graphene oxide (GO) and phytic acid (PA), whereby the GO was electrochemically reduced to ERGO, resulting in $(PANi/ERGO/PANi/PA)_{10}$ film electrode. Especially, we examined the possibility to improve the volumetric capacitive property of $(PANi/ERGO)_{20}$ film electrode via combining a spherical hexakisphosphate PA nanoparticle into the multilayer film that would dope PANi properly and also increase the porosity and surface area of the electrode. The electrochemical performances of the multilayer film electrodes were investigated using a three-electrode configuration in 1 M $H_2SO_4$ electrolyte. As a result, the $(PANi/ERGO)_{20}$ electrode showed the volumetric capacitance of $666F/cm^3$ at a current density of $1A/cm^3$, which was improved to the volumetric capacitance of $769F/cm^3$ for the $(PANi/ERGO/PANi/PA)_{10}$ electrode, in addition to the cycling stability maintained to 79.3% of initial capacitance after 1000 cycles. Thus, the electrochemical characteristics of the $(PANi/ERGO)_{20}$ electrode, which was densely packed by ${\pi}-{\pi}$ stacking between the electron-rich conjugate components, could have been improved through structural modification of the multilayer film via combining a spherical hexakisphosphate PA nanoparticle into the multilayer film.

Characterization of ultrathin ONO stacked dielectric layers for NVSM (NVSM용 초박막 ONO 적층 유전층의 특성)

  • 이상은;김선주;서광열
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.424-430
    • /
    • 1998
  • Film characteristics of thin ONO dielectric layers for MONOS (metal-oxide-nitride-oxide-semiconductor) EEPROM was investigated by AES, SIMS, TEM and AFM. The ONO films with different dimension of tunneling oxide, nitride, and blocking oxide were fabricated. During deposition of the LPCVD nitride films on tunneling oxide, this thin oxide was nitrized. When the blocking oxide were deposited on the nitride film, the oxygen not only oxidized the nitride surface, but diffused through the nitride. The results of ONO film analysis exhibits that it is made up of $SiO_2$(blocking oxide)/O-rich SiOxNy (interface)/ N-rich SiOxNy(nitride)/O-rich SiOxNy(tunneling oxide). In addition, the SiON phase is distributed mainly near the tunneling oxide/nitride and nitride/blocking oxide interfaces, and the $Si_2NO$ phase is distributed mainly at nitride side of each interfaces and in tunneling oxide.

  • PDF

Chemisorption of CO on ultrathin epitaxial Ni films n Cu(001) surface

  • E.K. Hwang;J.J. Oh;Lee, J.S.;Kim, S.K.;Kim, J.S.;Kim, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.182-182
    • /
    • 1999
  • The chemisorption effect of CO on the Ni/Cu(001) surface was investigated using LEED(Low Energy Electron Diffraction) and EELS(Electron Energy Loss Spectrscopy0 under the UHV conditions. after mounting the Cu(001) single crystal in the UHV chamber (base pressure 1$\times$10-10Torr), a clean surface was obtained after a few cycles of repeated Ar+ ion sputtering and annealing at about 40$0^{\circ}C$. The epitaxial thin Ni films were formed on the Cu(001) by evaporation from 99.999% Ni block. The pseudomorphic growth and the orderness of the thin Ni films were monitored by c(2$^{\circ}C$2) LEED pattern. CO adlayers on Ni epitaxial thin films were prepared by dosing pure CO has through a leak valve. After CO adsorpton at room temperature, two pairs of peaks were observed by EELS, whose relative intensities are changed as the film thickness is varied and time is elapsed. These two pair of peaks are likely related to different bonding sites (-top and bridge sites) of C-Ni as well as C-O vibration. Experimental results and qualitative interpretation of the spectra wille be discussed. The possibility of using EELS in combination with probe species (CO) to investigate the nature of thin film growth is mentioned. We will report the experimental result of O2 dosage on Ni film and interaction of CO and O2.

  • PDF

Understanding Deactivation of Ru Catalysts by In-situ Investigation of Surface Oxide Stability under CO Oxidation and Oxidative/Reductive Conditions

  • Qadir, Kamran;Joo, Sang-Hoon;Mun, Bong-Jin S.;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.212-212
    • /
    • 2011
  • In addition to the catalysts' activity and selectivity, the deactivation of catalysts during use is of practical importance. It is crucial to understand the phenomena of the deactivation to predict the loss of activity during catalyst usage so that the high operational costs associated with catalyst replacement can be reduced. In this study, the activity of Ru catalysts, such as nanoparticles (3~6 nm) and polycrystalline thin film (50 nm), have been investigated under CO oxidation and oxidative/reductive reaction conditions at various temperatures with the ambient pressure X-Ray photoelectron spectroscopy (APXPS). With APXPS, the surface oxides on the catalyst are measured and monitored in-situ. It was found that the Ru film exhibited faster oxidation-and-reduction compared to that of nanoparticles showing mild oxidative-and-reductive characteristics. Additionally, the larger Ru nanoparticles showed a higher degree of oxide formation at all temperatures, suggesting a higher stability of the oxide. These observations are in agreement with the catalytic activity of Ru catalysts. The loss of activity of Ru films is correlated with bulk oxide formation, which is inactive in CO oxidation. The Ru nanoparticle, however, does not exhibit deactivation under similar conditions, suggesting that its surface is covered with a highly active ultrathin surface oxide. Since the active oxide is more stable as nanoparticles than as a film, the nanoparticles showed mild oxidative/reductive behavior, as confirmed by APXPS results. We believe these simultaneous observations of both the surface oxide of Ru catalysts and the reactivity in real time enable us to pinpoint the deactivation phenomena more precisely and help in designing more efficient and stable catalytic systems.

  • PDF

Preparation of Ultra-Thin Transparent TiO2 Coated Film by Ink-Jet Printing Method (잉크젯 프린팅을 이용한 초박막 투명 TiO2 코팅층 제조)

  • Yoon, Cho-Rong;Oh, Hyo-Jin;Lee, Nam-Hee;Guo, Yupeng;Lee, Won-Jae;Park, Kyeong-Soon;Kim, Sun-Jae
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.190-196
    • /
    • 2007
  • Dye sensitized solar cells(DSSC) are the most promising future energy resource due to their high energy efficiency, low production cost, and simple manufacturing process. But one problem in DSSC is short life time compared to silicon solar cells. This problem occurred from photocatalytic degradation of dye material by nanometer sized $TiO_2$ particles. To prevent dye degradation as well as to increase its life time, the transparent coating film is needed for UV blocking. In this study, we synthesized nanometer sized $TiO_2$ particles in sols by increasing its internal pressure up to 200 bar in autoclave at $120^{\circ}C$ for 10 hrs. The synthesized $TiO_2$ sols were all formed with brookite phase and their particle size was several nm to 30 nm. Synthesized $TiO_2$ sols were coated on the backside of fluorine doped tin oxide(FTO) glass by ink jet printing method. With increasing coating thickness by repeated ink jet coating, the absorbance of UV region (under 400 nm) also increases reasonably. Decomposition test of titania powders dispersed in 0.1 mM amaranth solution covered with $TiO_2$ coating glass shows more stable dye properties under UV irradiation, compared to that with as-received FTO glass.

Sensitivity Analysis of Effective Viscosity Coefficients for Computing Characteristics of Ultrathin Gas Film Bearings (초미세 틈새의 기체 베어링 해석용 유효 점도의 표현식과 관련 계수들의 민감도 해석)

  • Kim, Ui Han;Rhim, Yoon Chul
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • A more accurate expression for effective viscosity is obtained using a linear regression of the data from Fukui-Kaneko's model, which are obtained through numerical calculations based on the linearized Boltzmann equation. Veijola and Turowski's expression is adopted as a base function for effective viscosity. The four coefficients in that equation are optimized, and sensitivity analysis is conducted for these coefficients. The results show that the coefficient for the first-order Knudsen number is the most accurate, whereas the coefficient in the exponential of the Knudsen number is the least accurate compared with Fukui-Kaneko's results. The expression for effective viscosity is accurate within 0.02% rms of Fukui-Kaneko's results for the inverse Knudsen numbers from 0.01 to 100 and surface accommodation coefficients ranging from 0.7 to 1.

Study on Charge Transport in Nanoscale Organic Monolayers for Molecular Electronics Using Liquid Phase Electrodes

  • Hwang, Jin-Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.235-241
    • /
    • 2005
  • Incorporation of solid electrodes frequently involves plasma-based processing. The effect of plasma can influence the physical characteristics, depending on the magnitude in plasma. The undesired feature of plasma-induced damage should be prevented in characterizing the ultra-thin materials, such as ultra-thin films and organic monolayers. The current work at first proves the applicability of a liquid phase electrode in the electrical/dielectric properties through comparative work using Al and Hg on ultrathin $Al_2O_3$ films deposited through atomic layer deposition at low temperature: Two types of metals such as Aluminum (Al) and mercury (Hg) were used as electrodes in $Al_2O_3$ thin films in order to investigate the effect of electrode preparation on the current-voltage characteristics and impedance features as a function of thickness in $Al_2O_3$ film thickness. The success of Hg in $Al_2O_3$ thin films is applied to the AC and DC characterization of the organic monolayers obtained using the Langmuir-Blodgett method. From the DC current-voltage characteristics, the diode-like response is found to originate from the bulk response of the organic materials, evidenced by the fact and the capacitance is inversely related to the absolute thickness of organic layers.

  • PDF