• Title/Summary/Keyword: ultrasound radiation

Search Result 144, Processing Time 0.027 seconds

Ultrasound-guided Exact Focusing of Extracorporeal Shock Wave Therapy for the Calcific Tendinitis of Gluteus Medius - A Case Report - (중둔건 석회화 건염의 초음파 유도하 정확한 조준에 의한 체외충격파치료 -증례 보고-)

  • Moon, Sang Ho;Lee, Song;Kim, Kwang Hai;Jeong, Jongpil;Hong, Seong Won
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.5 no.2
    • /
    • pp.94-98
    • /
    • 2012
  • Calcific tendinitis is characterized by inflammation around calcium hydroxyapatite crystal deposits. Minimally invasive extracorporeal shock wave therapy (ESWT) has been postulated to be an effective treatment option for treating calcific tendinitis. In clinical practice, shock waves usually are aimed at the painful area after palpation and not focused. It has been known that exact fluoroscopic focusing of ESWT at the calcific deposit for treatment of calcifying tendinopathy is highly effective. Ultrasound is a simple, inexpensive and radiation-free diagnostic tool that has been used to demonstrate tendinopathy including calcific tendinitis. However, focusing of shock wave under ultrasound is less well established. We present a patient in whom large calcific tendinitis of gluteus medius was completely resolved by exact focusing of ESWT by ultrasound with literature review.

  • PDF

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho, Jai-Wan;Jung, Hyun-Kyu;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.273-275
    • /
    • 2005
  • Active thermography is being used since several years for remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements were performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

  • PDF

Embryonic Effects of Ultrasound Irradiation on Preimplantation Stage of ICR Mouse Embryos - About embryonic death and malformation of ultrasound mechanisms - (초음파(超音波)에 대한 ICR Mouse 착상전기(着床前期)의 개체(個體) Level 영향(影響)(기형(奇形).배사망.(胚死亡))으로부터 초음파(超音波)의 물리학적(物理學的) 특성(特性)에 대한 연구(硏究))

  • Song, Jae-Kwan;Kim, Ye-Hyun
    • Journal of radiological science and technology
    • /
    • v.18 no.2
    • /
    • pp.75-86
    • /
    • 1995
  • Embryos and fetuses are more sensitive to various environmental agents than adults of children biological effects following the exposure, such as intrauterin, malformation, have intimate conception with the prenatal exposure. There have been many studies on radiation and other agent. However, imformation about the ultrasound effects is limited. It is very important to study the effect of ultrasound with these kinds of fatera in consideration of ultrasound protection and safty. In this study, embryonic and fefal effects of ICR mouse embryos irradiated on 24, 48, 12 and 192 hpc of preimplantation and organogenesis period at the intensity of $0.5{\sim}3\;W/cm^2$ were investigated. Many type of external malformation observed in mouse irradiated on 72 hpc and 192 hpc. However, the embryos irradiated on 24 hpc and 48 hpc, at witch embryos had less then 6 cells and were pre-compaction stage, had no sensitivity for external malformation. The threshold doses of external malformation in mouse irradiated on 72 hpc and 192 hpc, at which embryos were consisted of $16{\sim}32$ cells and neural formation stage, were $1\;W/cm^2$ and $0.5\;W/cm^2$.

  • PDF

Modified Piezoelectric Ceramics for Portable Ultrasonic Medical Probe Application (휴대용 의료 초음파 프로브 적용을 위한 압전체 제조 및 특성)

  • Kang, Dong Heon;Chae, Mi Na;Hong, Se Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.483-488
    • /
    • 2016
  • Ultrasound imaging by using piezoelectric materials, such as lead zirconium titanate (PZT) has been one of the most preferred modes of imaging in the medical field due to its simple, low cost and non-ionizing radiation in comparison to other imaging techniques. Recently, the market demand for portable ultrasound is becoming larger with applications in developing countries, disaster area, military, and emergency purposes. However, most of ultrasound probes used is bulky and high power consumable, so unsuitable for such applications. In this study, the 3 layered ceramic specimen consisted of 128 pitches of $420{\mu}m$ in width and $450{\mu}m$ in thickness were prepared by using the Ti-rich PZT compositions co-fired at $1,050^{\circ}C$. Their electrical and ultrasound pulse-echo properties were investigated and compared to the single layer specimen. The 3 layered ultrasound probe showed 1.584 V of Vp-p, which is 3.2 times higher than single layered one, implying that it would allow effectively such a portable ultrasound probe system. The result were discussed in terms of higher capacitance, lower impedance and higher dielectric coefficient of the 3 layered ultrasound probe.

Measurement of the Shear Modulus of an Ultrasound Tissue Phantom (초음파 연조직 팬텀에서 횡탄성의 측정)

  • Park, Jeong-Man;Choi, Seung-Min;Kwon, Sung-Jae;Jeong, Mok-Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.399-409
    • /
    • 2012
  • In this paper we propose a method for measuring the shear modulus of an ultrasound soft tissue phantom using an acoustic radiation force. The proposed method quantitatively determines the shear modulus based on the rise time of a displacement induced by an acoustic radiation force at the focal point of a focused ultrasound beam. The shear wave speed and shear modulus obtained from the proposed method and a shear wave propagation method were compared to verify the validity of the proposed method. In the shear wave propagation method, the shear modulus is first computed by measuring the propagating speed of a shear wave induced in a phantom by a limited-diffraction transmit field, and then was compared to that obtained with the proposed method in an ultrasound data acquisition system calibrated based on the first computed shear modulus. The relative errors between the two methods were found to be 4% for shear wave speed and less than 9% for shear modulus, confirming the usefulness of the proposed method.

Role of Endoscopic Ultrasound in the Assessment of Superficial Esophageal Cancer (조기 식도암에서 내시경초음파의 역할)

  • Cho, Yu Kyung
    • Korean Journal of Bronchoesophagology
    • /
    • v.17 no.1
    • /
    • pp.19-22
    • /
    • 2011
  • Endoscopic ultrasound in the diagnosis of esophageal carcinoma is an indispensable procedure, not only to discuss the preoperative staging of the lesion, but also to evaluate the therapeutic effect of chemo-radiation therapy. The recent increase in the incidence of superficial esophageal cancer and promising developments in potentially curative endoscopic therapies have placed EUS to a central position in decision making. Recent data have called into question the staging accuracy of EUS to distinguish mucosal from submucosal lesions, particularly in patients with early disease. In those cases, diagnostic endoscopic resection may be useful for staging and curative in superficial lesions. Nonetheless, EUS has been regarded as the most accurate staging tool and should be performed to identify potential candidates for endoscopic resection.

  • PDF

Image Guided Radiation Therapy

  • Ui-Jung Hwang;Byong Jun Min;Meyoung Kim;Ki-Hwan Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.37-52
    • /
    • 2022
  • Over the past decades, radiation therapy combined with imaging modalities that ensure optimal image guidance has revolutionized cancer treatment. The two major purposes of using imaging modalities in radiotherapy are to clearly delineate the target prior to treatment and set up the patient during radiation delivery. Image guidance secures target position prior to and during the treatment. High quality images provide an accurate definition of the treatment target and the possibility to reduce the treatment margin of the target volume, further lowering radiation toxicity and improving the quality of life of cancer patients. In this review, the various types of image guidance modalities used in radiation therapy are distinguished into ionized (kilovoltage and megavoltage image) and nonionized imaging (magnetic resonance image, ultrasound, surface imaging, and radiofrequency). The functional aspects, advantages, and limitation of imaging using these modalities are described as a subsection of each category. This review only focuses on the technological viewpoint of these modalities and any clinical aspects are omitted. Image guidance is essential, and its importance is rapidly increasing in modern radiotherapy. The most important aspect of using image guidance in clinical settings is to monitor the performance of image quality, which must be checked during the periodic quality assurance process.

Radiologic Findings of Renal Inflammatory Pseudotumor: A Case Report

  • Tae Jung Kim;Seung Hyup Kim
    • Korean Journal of Radiology
    • /
    • v.1 no.4
    • /
    • pp.219-222
    • /
    • 2000
  • Renal inflammatory pseudotumor is a very rare benign condition of unknown etiology characterized by proliferative myofibroblasts, fibroblasts, histiocytes, and plasma cells. In the case we report, the lesion appeared on contrast-enhanced power Doppler US images as a well-defined hypoechoic mass with intratumoral vascularity, and on CT as a low-attenuated mass. Differentiation from malignant renal neoplasms was not possible.

  • PDF

Daily localization of partial breast irradiation patients with three-dimensional ultrasound imaging

  • Sayan, Mutlay;Vergalasova, Irina;Hard, Daphne;Wrigth, Heather;Archambault, Jessica;Gagne, Havaleh;Nelson, Carl;Heimann, Ruth
    • Radiation Oncology Journal
    • /
    • v.37 no.4
    • /
    • pp.259-264
    • /
    • 2019
  • Purpose: Accurate localization of the lumpectomy cavity during accelerated partial breast radiation (APBR) is essential for daily setup to ensure the prescribed dose encompasses the target and avoids unnecessary irradiation to surrounding normal tissues. Three-dimensional ultrasound (3D-US) allows direct visualization of the lumpectomy cavity without additional radiation exposure. The purpose of this study was to evaluate the feasibility of 3D-US in daily target localization for APBR. Materials and methods: Forty-seven patients with stage I breast cancer who underwent breast conserving surgery were treated with a 2-week course of APBR. Patients with visible lumpectomy cavities on high quality 3D-US images were included in this analysis. Prior to each treatment, X-ray and 3D-US images were acquired and compared to images from simulation to confirm accurate position and determine shifts. Volume change of the lumpectomy cavity was determined daily with 3D-US. Results: A total of 118 images of each modality from 12 eligible patients were analyzed. The average change in cavity volume was 7.8% (range, -24.1% to 14.4%) on 3D-US from simulation to the end-of-treatment. Based on 3D-US, significantly larger shifts were necessary compared to portal films in all three dimensions: anterior/posterior (p = 7E-11), left/right (p = 0.002), and superior/inferior (p = 0.004). Conclusion: Given that the lumpectomy cavity is not directly visible via X-ray images, accurate positioning may not be fully achieved by X-ray images. Therefore, when the lumpectomy cavity is visible on US, 3D-US can be considered as an alternative to X-ray imaging during daily positioning for selected patients treated with APBR, thus avoiding additional exposure to ionizing radiation.

A brief report on a technical description of ultrasound-guided lumbar sympathetic block

  • Moon, Jee Youn;Choi, Jae Kyu;Shin, Ji Yeon;Chon, Sung Won;Dev, Sushmitha
    • The Korean Journal of Pain
    • /
    • v.30 no.1
    • /
    • pp.66-70
    • /
    • 2017
  • The lumbar sympathetic ganglion block (LSGB) is widely used for diagnosing and treating sympathetically maintained pain disorders. The LSGB has been conventionally carried out under fluoroscopy or computed tomography guidance. However, as ultrasound technology improved, ultrasound-guided interventions have been expanding their territory to deeper structures. Ultrasound guidance provides many benefits including protecting vascular injection, shortening procedure time in some cases, and reducing the emission of radiation. In this report, we describe a successful case of a US-guided LSGB without major complications. We expect that US-guided LSGBs can be implemented and furnished in the daily outpatient clinical setting by highly trained pain physicians.