• Title/Summary/Keyword: ultrasonic waveform

Search Result 66, Processing Time 0.022 seconds

An Onboard Measurement System of Ultrasonic Velocity and Attenuation using the Wavelet Transform

  • Cho, Seog-bin;Ha, Sung-kil;Jung, Sung-Yun;Baek, Kwang-ryul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1826-1828
    • /
    • 2004
  • In this paper, we present an ultrasonic velocity and attenuation measurement system. There are many ultrasonic measurement methods that are used in nondestructive testing applications. They include material property determination, microstructural characterization, and flaw detection. Ultrasonic parameters such as velocity and attenuation are most commonly used in them. Advanced signal analysis which is called "ime-frequency analysis"has been used widely in nondestructive evaluation applications. Wavelet transform is the most advanced technique for processing signals with time-varying spectra. Using the echo waveform gathered by the designed hardware system, we performed simulation of the signal processing algorithms. Then the algorithm is implemented on the system.

  • PDF

Thickness Measurement of A Thin Layer Using Plane Ultrasonic waves (평면 초음파를 이용한 미소 간극 측정)

  • 김노유
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.415-418
    • /
    • 1995
  • This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave using ultrasonic pulse-echo method. The technique determines the thickness of a thin layer in a layered medium form the amplitudes of the total reflected waves from the back side layer of interst. Thickness of a very thin layer few inch deep inside the media can be measured without using a very high frequency ultrasonic transducer over 100MHz which must be used in the conventional techniques for the precision measurement of a thin layer. The method also requires no inversion process to extract the thickness from the waveform of the reflected waves, so that it makes possible on-line measurement of the thickness of the layer.

  • PDF

Development of Ultrasonic Test Equipment for Investigating the Morphology of Barrier Materials

  • Kim Sung-Ho;Lee Young-Sam
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.217-222
    • /
    • 2006
  • Recently, LG chemical corporation developed new material called HYPERIER, which has an excellent barrier characteristic. It has many layers which are made of nano-composite within LDPE(Low-Density Poly Ethylene). In order to guarantee the quality of the final product from the production line, a certain test equipment is required to investigate the existence of layers inside the HYPERIER. In this work, ultrasonic sensor based test equipment for investigating the existence of inner layers is proposed. However, it is a tedious job for human operators to check the existence by just looking at the resounding waveform from ultrasonic sensor. Therefore, to enhance the performance of the ultrasonic test equipment, wavelet and PCA(Principle Componet Analysis) schemes are introduced into neural network scheme which is used for classification. To verify the feasibility of the proposed scheme, some experiments are executed.

Evaluation of Surface-Breaking Crack Based on Laser-Generated Ultrasonics and Wavelet Transform (레이저 초음파와 Wavelet변환을 이용한 재료표면균열 평가)

  • Lee, Min-Rae;Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.152-162
    • /
    • 2001
  • Laser-generated ultrasonic technique which is one of the reliable nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristics of signal obtained from surface crack. Therefore, the signal analysis of the laser-generated ultrasonics is absolutely necessary for the accurate and quantitative estimation of the surface defects. In this study, one-sided measurement by laser-generated ultrasonic has been applied to evaluate the depth of the surface-breaking crack in the materials. However, since the ultrasonic waveform excited by pulse laser is very difficult to distinguish the defect signals, it is necessary to consider the signal analyses of the transient waveform. Wavelet Transform(WT) is a powerful tool for processing transient signals with temporally varying spectra that helps to resolve high and low frequency transient components effectively. In this paper, the analyses of the surface-breaking crack of the ultrasonic signal excited by pulse laser are presented by employing the WT analyses.

  • PDF

Study of the Weld Defects Identification Method by Ultrasonic Pulse Echo Patterns (초음파 펄스 에코 패턴으로 용접 결함 식별 방법 연구)

  • Kim, Won-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6114-6118
    • /
    • 2013
  • This study examined the ultrasonic pulse reflection method(UPRM) for testing each ultrasonic pulse waveform model(UPWM) based on weld defects. The sharp crack of a clear signal was generated. The echo height of the defective probes changed according to the location. In a long crack in a circle around the defective probes, the Swivel scanning echo height when using the particle was reduced drastically. The peaks in the echo were thin because the needle was pointed. The porosity defects arising from a single echo was sharp and crisp, but a number of pores of the collective reflection overlapped and ajagged echo was observed. Slag, slag inclusions, cracks, and defects at the Swivel scan of each particle using the echo shape showed difference in the degree. Cracks were revealed as sudden changes in the echo height of the slag inclusions: increase ${\rightarrow}$ decrease ${\rightarrow}$ increase ${\rightarrow}$ decrease. In addition, the location of a number of defects in the dense pore geometry, such as a typical echo sundry, revealed the shape in the slag. Poor penetration of the defect echo, revealed the cracks to have a sharp-edged, crack-like shape with an echo.

The Prediction of Fatigue Damage for Pressure Vessel Materials using SH Ultrasonic Wave (압력용기 고온 고압부의 피로손상 예측을 위한 SH 초음파 평가 기법 개발)

  • Kang, Yong-Ho;Chung, Yong-Keun;Park, Jong-Jin;Park, Ik-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.678-683
    • /
    • 2003
  • Ultrasonic method using SH(shear horizontal) wave has been developed to determine the surface damage in fatigued material. Fatigue damages based on propagation energy were analyzed by multiregression analysis and phase measurement in interrupted fatigue test specimen including CrMoV and 12Cr alloy steel. From the test results, as the fatigue damage increased the propagation time of the launched waves increased and amplitude of wavelet decreased. Also, analysis for the waveform modulation showed a reliable estimation, with confidence limit of 97% for 12Cr steel and 95% for CrMoV steel, respectively. Therefore, It is thought that SH ultrasonic wave technique can be applied to determine fatigue damage of in-service component nondestructively.

  • PDF

The Prediction of Fatigue Damage for Pressure Vessel Materials using Shear Horizontal Ultrasonic Wave (SH(shear horizontal) 초음파를 이용한 압력용기용 재료의 피로손상 예측)

  • Kang, Yong-Ho;Chung, Yong-Keun;Song, Jung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.90-96
    • /
    • 2009
  • Ultrasonic method using SH(shear horizontal) wave has been developed to determine the surface damage in fatigued material. Fatigue damages based on propagation energy were analyzed by multi-regression analysis in interrupted fatigue test specimen including CrMoV and 12Cr alloy steel. From the test results, as the fatigue damage increased the propagation time of the launched waves increased and amplitude of wavelet decreased. Also, analysis for the waveform modulation showed a reliable estimation, with confidence limit of 97% for 12Cr steel and 95% for CrMoV steel, respectively. Therefore, It is thought that SH ultrasonic wave technique can be applied to determine fatigue damage of in-service component nondestructively.

Measurement of the Crack Height using the Two-Probe Ultrasonic Diffraction Method. (초음파회절방법(超音波回折方法)을 이용한 귀렬(龜裂)의 높이 측정(測定))

  • Lee, Jae-Ok;Lee, Seung-Kyu;Kim, Young-Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.2
    • /
    • pp.35-41
    • /
    • 1988
  • The optimum test conditions of measuring the crack height were determined for the two-probe ultrasonic diffraction method. The applicability and the accuracy of the two-probe ultrasonic diffraction method on the inclined artificial cracks and the fatigue cracks were evaluated. It us possible to measure the height of the normal and inclined artificial cracks with the maximum error of ${\pm}\;0.5mm$ with the two-probe ultrasonic diffraction method. It was found, however, that the accuracy of this method in meaasuring the height of the fatigue crack depends on the degree of closure of the crack tip. It was desirable to choose a refraction angle as small as possible, but the angle should not be so small that the distortion of the lateral waveform became appreciable.

  • PDF

Effects of Cross-Sectional Dimension and Moisture Profile of Small Specimens on Characteristics of Ultrasonic Wave Propagation (목재의 단면적과 수분경사가 초음파 전달 특성에 미치는 효과)

  • Kang, He-Yang;Lee, Kwan-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.19-24
    • /
    • 2000
  • Effects of the cross-sectional dimension and moisture profile of wood specimens on the ultrasonic sound velocities of radiata pine heartwood and sapwood. Each moisture profile model specimen was made by composing five wood pieces with various moisture contents. As the cross-sectional dimensions decreased the ultrasonic velocities of both heartwood and sapwood decreased by 4~8%. In the ultrasonic signals transmitted through the specimens low frequency components more dominated than high frequency components as the dimension of cross section increased. The specimens with the same average MCs and different moisture profiles showed different ultrasonic velocities. By plotting the ultrasonic velocities against the average moisture contents of the inner three pieces of the moisture profile model specimens it was revealed that three distinct plot patterns existed.

  • PDF