• Title/Summary/Keyword: ultrasonic spray pyrolysis deposition

Search Result 24, Processing Time 0.02 seconds

Deposition of Epitaxial YBCO Films on $LaAlO_3$(100) Substrate by Spray Pyrolysis Method (분사 열분해 CVD법에서 분사방식에 따른 YBCO 박막의 결정구조와 미세조직 연구)

  • Kim Ho-Jin;Joo Jinho;Hong Suk-Kwan;Lee Sun-Wang;Lim Sun-Weon;Lee Hee-Gyoun;Hong Gye-Won
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.52-57
    • /
    • 2005
  • [ $YBa_{2}Cu_{3}O_y$ ] superconducting films were prepared on $LaAlO_3$(100) single crystal substrate by spray pyrolysis method. The precursor solution was prepared by dissolving nitrate powders in de-ionized water. Both of ultrasonic and concentric nebulizers were used in order to generate fine droplets of precursor solution. C-axis oriented films were obtained at deposition temperature of $750\~850^{\circ}C$ and working pressure of 100 Torr and 500 Torr. In case of ultrasonic nebulizer, films showed rough and porous surface morphology due to formation of enormous droplets, while smooth and dense films were obtained for concentric nebulizer. A transport $J_c$ value of $0.43\;MA/cm^2$ at 77 K and self field was achieved on $LaAlO_3$(100) single crystal substrate.

  • PDF

Influence of Fluorine-Doped Tin Oxide Coated on NiCrAl Alloy Foam Using Ultrasonic Spray Pyrolysis Deposition (초음파 분무 열분해법을 이용한 NiCrAl 합금 폼에 코팅된 불소 도핑된 주석 산화물의 영향)

  • Shin, Dong-Yo;Bae, Ju-Won;Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.392-397
    • /
    • 2017
  • Fluorine-doped tin oxide (FTO) coated NiCrAl alloy foam is fabricated using ultrasonic spray pyrolysis deposition (USPD). To confirm the influence of the FTO layer on the NiCrAl alloy foam, we investigated the structural, chemical, and morphological properties and chemical resistance by using USPD to adjust the FTO coating time (12, 18, and 24 min). As a result, when an FTO layer was coated for 24 min on NiCrAl alloy foam, it was found to have an enhanced chemical resistance compared to those of the other samples. This improvement in the chemical resistance of using USPD NiAlCr alloy foam can be the result of the existence of an FTO layer, which can act as a protection layer between the NiAlCr alloy foam and the electrolyte and also the result of the increased thickness of the FTO layer, which enhances the diffusion length of the metal ion.

Spray Pyrolysis Deposition of Zinc Oxide Thin Films by ZnO Buffer Layer (ZnO buffer 층을 이용한 초음파 분무열분해 ZnO 박막 증착)

  • Han, In Sub;Park, Il-Kyu
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.403-408
    • /
    • 2017
  • We investigated the effect of ZnO buffer layer on the formation of ZnO thin film by ultrasonic assisted spray pyrolysis deposition. ZnO buffer layer was formed by wet solution method, which was repeated several times. Structural and optical properties of the ZnO thin films deposited on the ZnO buffer layers with various cycles and at various temperatures were investigated by field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence spectrum analysis. The structural investigations showed that three-dimensional island shaped ZnO was formed on the bare Si substrate without buffer layers, while two-dimensional ZnO thin film was deposited on the ZnO buffer layers. In addition, structural and optical investigations showed that the crystalline quality of ZnO thin film was improved by introducing the buffer layers. This improvement was attributed to the modulation of the surface energy of the Si surface by the ZnO buffer layer, which finally resulted in a modification of the growth mode from three to two-dimensional.

Electrical and Optical Properties of F-Doped SnO2 Thin Film/Ag Nanowire Double Layers (F-Doped SnO2 Thin Film/Ag Nanowire 이중층의 전기적 및 광학적 특성)

  • Kim, Jong-Min;Koo, Bon-Ryul;Ahn, Hyo-Jin;Lee, Tae-Kun
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.125-131
    • /
    • 2015
  • Fluorine-doped $SnO_2$ (FTO) thin film/Ag nanowire (NW) double layers were fabricated by means of spin coating and ultrasonic spray pyrolysis. To investigate the optimum thickness of the FTO thin films when used as protection layer for Ag NWs, the deposition time of the ultrasonic spray pyrolysis process was varied at 0, 1, 3, 5, or 10 min. The structural, chemical, morphological, electrical, and optical properties of the double layers were examined using X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, the Hall effect measurement system, and UV-Vis spectrophotometry. Although pure Ag NWs formed isolated droplet-shaped Ag particles at an annealing temperature of $300^{\circ}C$, Ag NWs covered by FTO thin films maintained their high-aspect-ratio morphology. As the deposition time of the FTO thin films increased, the electrical and optical properties of the double layers degraded gradually. Therefore, the double layer fabricated with FTO thin films deposited for 1 min exhibited superb sheet resistance (${\sim}14.9{\Omega}/{\Box}$), high optical transmittance (~88.6 %), the best FOM (${\sim}19.9{\times}10^{-3}{\Omega}^{-1}$), and excellent thermal stability at an annealing temperature of $300^{\circ}C$ owing to the good morphology maintenance of the Ag NWs covered by FTO thin films.

Annealing effects of ZnO:Er films on UV emission (ZnO:Er막의 UV 발광에 미치는 열처리 효과)

  • Choi, Mu-Hee;Ma, Tae-Young
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.316-321
    • /
    • 2009
  • Er-doped ZnO(ZnO:Er) films were deposited onto MgO wafers by ultrasonic spray pyrolysis at 550 $^{\circ}C$ varying the concentration of Er in the deposition source from 0.5 wt% to 3.0 wt%. Annealing of the films in a vacuum was carried out to increase the intensity of ultraviolet(UV) emission from the films. The annealing temperature was between 600$^{\circ}C$ and 800$^{\circ}C$. The crystallographic properties and surface morphology of the films were investigated by X-ray diffraction(XRD)and scanning electron microscope(SEM), respectively. The properties of photoluminescence(PL) for the films were investigated by the dependence of PL spectra on the annealing temperature. X-ray photoelectron spectroscopy(XPS) was conducted to find the composition change in the films by the annealing.

Effects of post anneal for the INZO films prepared by ultrasonic spray pyrolysis

  • Lan, Wen-How;Li, Yue-Lin;Chung, Yu-Chieh;Yu, Cheng-Chang;Chou, Yi-Chun;Wu, Yi-Da;Huang, Kai-Feng;Chen, Lung-Chien
    • Advances in nano research
    • /
    • v.2 no.4
    • /
    • pp.179-186
    • /
    • 2014
  • Indium-nitrogen co-doped zinc oxide thin films (INZO) were prepared on glass substrates in the atmosphere by ultrasonic spray pyrolysis. The aqueous solution of zinc acetate, ammonium acetate and different indium sources: indium (III) chloride and indium (III) nitrate were used as the precursors. After film deposition, different anneal temperature treatment as 350, 450, $550^{\circ}C$ were applied. Electrical properties as concentration and mobility were characterized by Hall measurement. The surface morphology and crystalline quality were characterized by SEM and XRD. With the activation energy analysis for both films, the concentration variation of the films at different heat treatment temperature was realized. Donors correspond to zinc related states dominate the conduction mechanism for these INZO films after $550^{\circ}C$ high temperature heat treatment process.

The electrical and optical properties of ZnO:Al films Prepared by ultrasonic spray Pyrolysis (초음파 분무법으로 제조한 ZnO:Al 박막의 전기 및 광학적 특성)

  • Lee, Soo-Chul;Moon, Hyun-Yeol;Lee, In-Chan;Ma, Tae-Young
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.283-286
    • /
    • 1999
  • Transparent conductive aluminum-doped ZnO(AZO) films Were prepared by a ultrasonic spray pyrolysis method at the substrate temperature below 23$0^{\circ}C$. A vertical type hot wall furnace was used as a reactor in the deposition system. Zinc acetate dissolved in methanol was selected as a precursor. The substrate temperature was varied from 18$0^{\circ}C$to 24$0^{\circ}C$. Aluminum (Al) was doped into ZnO films by incorporating anhydrous aluminum chloride (AlCl$_3$) in the zinc acetate solution. The proportion of the Al in the starting solution was varied from 0 wt % to 3.0 wt %. The crystallographic properties and surface morphologies of the films were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The resistivity of the films was measured by the Van der Pauw method, and the mobility and carrier concentration were obtained through the Hall effect measurements Transmittance was measured in the visible region. The effects of substrate temperature and aluminum content in the starling solution on the structural and electrical properties of the AZO films are discussed

  • PDF

The Effect of Nb-doped TiO2 Coating for Improving Stability of NiCrAl Alloy Foam (NiCrAl 합금 폼의 안정성 향상을 위해 코팅된 Nb-doped TiO2의 효과)

  • Jo, Hyun-Gi;Shin, Dong-Yo;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.328-335
    • /
    • 2019
  • Nb-doped $TiO_2$(NTO) coated NiCrAl alloy foam for hydrogen production is prepared using ultrasonic spray pyrolysis deposition(USPD) method. To optimize the size and distribution of NTO particles based on good physical and chemical stability, we synthesize particles by adjusting the weight ratio of the Nb precursor solution(5 wt%, 10 wt% and 15 wt%). The morphological, chemical bonding, and structural properties of the NTO coated NiCrAl alloy foam are investigated by X-ray diffraction(XRD), X-ray photo-electron spectroscopy(XPS), and Field-Emission Scanning Electron Microscopy(FESEM). As a result, the samples of controlled Nb weight ratio exhibit a common diffraction pattern at ${\sim}25.3^{\circ}$, corresponding to the(101) plane, and have chemical bonding(O-Nb=O) at 534 eV. The NTO particles with the optimum weight ratio of N (10 wt%) show a uniform distribution with a size of ~18.2-21.0 nm. In addition, they exhibit the highest corrosion resistance even in the electrochemical stability estimation. As a result, the introduction of NTO coated NiCrAl alloy foam by USPD improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the foam and the electrolyte. Thus, the optimized NTO coating can be proposed for excellent protection of NiCrAl alloy foam for hydrocarbon-based steam methane reforming(SMR).

Electrical and Optical Properties of Fluorine-Doped Tin Oxide Films Fabricated at Different Substrate Rotating Speeds during Ultrasonic Spray Pyrolysis Deposition (초음파 분무 열분해 증착 중 기판 회전 속도에 따른 플루오린 도핑 된 주석산화물 막의 전기적 및 광학적 특성)

  • Ki-Won Lee;yeong-Hun Jo;Hyo-Jin Ahn
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.55-62
    • /
    • 2024
  • Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).

Development of SAW Gas Sensor for Monitoring SOx Gas (SOx 가스감지용 SAW 가스 센서 개발)

  • Lee, Chan-Woo;Roh, Yong-Rae;Chung, Jong-Shik;Baik, Sung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.41-48
    • /
    • 1996
  • We developed SAW gas sensor for monitoring SOx gas with high sensitivity. It was fabricated as a microsensor for detecting SOx gas by depositing sensing material on SAW device. As a detecting layer material, CdS was selected. Deposition of CdS in the form of thin films was carried out by the ultrasonic spray pyrolysis method using ultrasonic spray nozzle. Thin films with the uniform and large surface area for sensors were deposited. The stable pyrolysis environment provided by uniform and fine droplets formed by spray nozzle made it possible to obtain thin films with excellent quality. The minimum grain size of the CdS thin films was about 50 nm when deposited at $300^{\circ}C$. SAW gas sensors showed reasonable sensitivity and reproducibility. Further studies are required to investigate the interference of other gases to SOx gas detection.

  • PDF