• Title/Summary/Keyword: ultrasonic receiver

Search Result 119, Processing Time 0.025 seconds

Ultrasonic C-scan System Development Using DSP (DSP 를 이용한 초음파 C-scan 시스템 개발)

  • Nam, Young-Hyun;Seong, Un-Hak;Kim, Jeong-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.32-39
    • /
    • 1999
  • Digital signal processor (DSP) is used to obtain the peak value and the time difference of ultrasonic signals, to make digital filter, and to derive mathematical transformation from analog circuit. In this study, C-scan system and control program have been developed to high speed data acquisition. This system consists of signal processing parts (DSP, oscilloscope, pulser/receiver, digitizer), scanner, and control program. The developed system has been applied to a practical ultrasonic testing in overlay weld, and demonstrated high speed with precision

  • PDF

Kinematics Analysis of a 5-Axis Ultrasonic Inspection Equipment (5축 초음파 검사장비의 기구학 해석)

  • Han, Myung-Chul;Sung, Chang-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.89-96
    • /
    • 2015
  • In this paper, it is studied that kinematic analysis of a 5-axis ultrasonic inspection equipment. The equipment is comprised of three straight axes and two rotary axes. With features of ultrasonic, the transmitter and receiver of the equipment are vertical to a test surface, operating at regular intervals. To perform this well, the motions of every link should be found on the based of kinematic analysis of the equipment. We chose starting point for testing and defined relations among all links through transformation of coordinates. For double curvature-shaped test object, we generated test paths. To follow these, we found motions of all links using inverse kinematics. By using Matlab/Simulink, simulator was developed, so that we could find out desired trajectories of main axes for a scan.

A Study on Map Building of Mobile Robot Using RFID Technology and Ultrasonic Sensor (초음파센서와 RFID 시스템을 이용한 이동로봇의 맵 빌딩에 관한 연구)

  • Lee, Do-Kyoung;Im, Jae-Sung;Kim, Sang-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.239-244
    • /
    • 2010
  • This paper is to present map building of mobile robot using RFID (Radio Frequency Identification) technology and ultrasonic sensor. For mobile robot to perform map building, the mobile robot needs its localization and accurate driving in space. In this reason, firstly, kinematic modeling of mobile robot under non-holonomic constrains is introduced. Secondly, based on this modeling, a tracking controller is designed for tracking a given path based on backstepping method using Lyapunov function. The Lyapunov function is also introduced for proving the stability of the designed tracking controller. Thirdly, 2D map building is performed by RFID system, mobile robot system and ultrasonic sensors. The RFID mobile robot system is composed of DC motor, encoder, ultra sonic sensor, digital compass, RFID receiver and RFID antenna. Finally, the path tracking simulation results and map building experimental results are presented to show the effectiveness of the designed controller.

Perception of small-obstacles using ultrasonic sensors and its avoidance method in robot (초음파센서를 이용한 로봇의 소형장애물 감지 및 회피방법연구)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • The research on the avoidance of the large-obstacles such as a wall, a large box, etc. using ultrasonic sensors has been generally progressed up to now. But the mobile robot could meet a small-obstacle such as a small plastic bottle, a small sphere, and so on in its designated path, and could be disturbed by them in the locomotion of the mobile robot. So, it is necessary to research on the avoidance of a small-obstacle. In this paper, a robot's small-obstacle perceiving system was designed and fabricated by arranging four ultrasonic sensors on the plastic plate to avoid small-obstacles. The system was installed on the upper part of the mobile robot with the slope angles between $40.7^{\circ}$ and $23.3^{\circ}$ to a horizontal line and the dynamic characteristic test of the robot was performed. As the result, it was confirmed that the mobile robot with the system could avoid small-obstacles in indoor environment safely.

Complete Modeling of an Ultrasonic NDE Measurement System - An Electroacoustic Measurement Model

  • Dang, Changjiu;Lester W. Schmerr, Jr.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.1-21
    • /
    • 2001
  • It will be shown how models can simulate all the elements of an ultrasonic NDE measurement system, including the pulser/receiver, cabling, transducer(s), and the acoustic/elastic waves fields. When combined, these models form what is called the electroacoustic measurement model. It will be demonstrated how this electroacoustic measurement model can be used to conduct parametric transducer and system studies and how the model can form the basis for experimentally characterizing all the elements of the ultrasonic measurement system, using purely electrical measurements.

  • PDF

Simultaneous Measurement of Ultrasonic Velocity and Thickness of Isotropic and Homogeneous Solids Using Two Transducers (두개의 탐촉자를 사용한 등방성 균일 고체의 초음파 속도 및 두께 동시 측정법)

  • Lee, Jeong-Ki;Kwon, Jin-O;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.363-368
    • /
    • 1999
  • Ultrasonic pulse-echo methods measuring the transit time through specimens have been widely used in determination of ultrasonic velocity and thickness of specimens. Usually, to determine the velocity of the ultrasonic. the transit time of the ultrasonic pulse through specimen is measured by using the ultrasonic measuring equipment such as the oscilloscope including ultrasonic pulser/receiver and the thickness of the specimen is measured by using the length measuring instrument such as micrometer or vernier calipers etc., i. e. each parameter is measured by using each measuring method. In the case of the measuring the thickness of a specimen by using the ultrasonics. the ultrasonic equipments, which measure the thickness, such as the ultrasonic thickness gauge must be calibrated by using the reference block of which the ultrasonic velocity is known beforehand. In the present work, we proposed a new method for simultaneous measurement of ultrasonic velocity and thickness without reference blocks. Experimental results for several specimens show that proposed method have good agreements with those by traditional ultrasonic method.

  • PDF

Implementation of An Automated Ultrasonic Flaw Imaging System for the Inspection of Pipe Welding (배관 용접부 자동 초음파 결함 영상 보정 시스템 구현)

  • Kim, Han-Jong;Park, Jong-Hoon;Kim, Cheol-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.556-559
    • /
    • 2008
  • In this study, an automated ultrasonic testing system and post signal and image processing techniques are developed in order to construct ultrasonic flaw images in weldments. The automated ultrasonic testing system developed in the present study adopted an 8 channel pulser/receiver-ADC unit and a 2 axis motion driving unit and the post signal and image processing algorithms are built into the system program of the automated ultrasonic testing system.

  • PDF

Perception of small-obstacle using ultrasonic sensors for a mobile robot (이동로봇을 위한 초음파센서를 이용한 소형장해물 감지)

  • 김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.21-24
    • /
    • 2004
  • This paper describes a perception of small-obstacle using ultrasonic sensors in a mobile robot. The research on the avoidance of the large-obstacles such as a wall, a large box, etc. using ultrasonic sensors has been generally progressed up to now. But the mobile robot could meet a small-obstacle such as a small plastic bottle of about 1 l in quantity, a small box of 7${\times}$7${\times}$7 cm3 in volume, and so on in its designated path, and could be disturbed by them in the locomotion of the mobile robot. So, it is necessary to research on the avoidance of a small-obstacle. In this paper, the small-obstacle perceiving system was designed and fabricated by arranging four ultrasonic sensors on the plastic plate to avoid a small-obstacle. The small-obstacle perceiving system was installed on the above part of the mobile robot with the slope of 40.7$^{\circ}$ to a horizontal line. The static characteristic test and the dynamic characteristic test were performed to know the information of the used ultrasonic sensors. As a result, the mobile robot with the small-obstacle perceiving system could avoid a small-obstacle, and could move in indoor environment safely.

  • PDF

Design of QPSK Ultrasonic Transceiver For Underwater Communication (수중 통신을 위한 QPSK 초음파 송수신기의 설계)

  • Cho Nai-Hyun;Kim Duk-Yung;Kim Yong-Deuk;Chung Yun-Mo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.51-59
    • /
    • 2006
  • In this paper, we propose an excellent ultrasonic transceiver system based on a QPSK modulation technique for underwater communication. The transmitter sends a still image at the level of 187dB re $1{\mu}Pa/V@1m$ through a power amplifier by driving an ultrasonic sensor. The receiver performs digital conversion at the 100kHz sampling frequency, demodulation and decoding process for the image sent from the transmitter through the underwater communication. We have shown that the processed image at the receiver is almost the same as the orignal one. The maximum detection distance of the system proposed in this paper is approximately 1.17km. To cope with the difficulties of transmission loss, this paper proposes, implements and analyzes important parameters of sensors and circuits used in the system. Most of the underwater communication has focused on the transmission of audio signal, but this paper suggests an efficient underwater communication system for still image transmission.

Internal Defection Evaluation of Spot Weld Part and Carbon Composite using the Non-contact Air-coupled Ultrasonic Transducer Method (비접촉 초음파 탐상기법을 이용한 스폿용접부 및 탄소복합체의 내부 결함평가)

  • Kwak, Nam-Su;Lee, Seung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6432-6439
    • /
    • 2014
  • The NAUT (Non-contact Air coupled Ultrasonic Testing) technique is one of the ultrasonic testing methods that enables non-contact ultrasonic testing by compensating for the energy loss caused by the difference in acoustic impedance of air with an ultrasonic pulser receiver, PRE-AMP and high-sensitivity transducer. As the NAUT is performed in a state of steady ultrasonic transmission and reception, testing can be performed on materials of high or low temperatures or specimens with a rough surface or narrow part, which could not have been tested using the conventional contact-type testing technique. For this study, the internal defects of spot weld, which are often applied to auto parts, and CFRP parts, were tested to determine if it is practical to make the NAUT technique commercial. As the spot welded part had a high ultrasonic transmissivity, the result was shown as red. On the other hand, the part with an internal defect had a layer of air and low transmissivity, which was shown as blue. In addition, depending on the PRF (Pulse Repetition Frequency), an important factor that determines the measurement speed, the color sharpness showed differences. With the images obtained from CFRP specimens or an imaging device, it was possible to identify the shape, size and position of the internal defect within a short period of time. In this paper, it was confirmed in the above-described experiment that both internal defect detection and image processing of the defect could be possible using the NAUT technique. Moreover, it was possible to apply NAUT to the detection of internal defects in the spot welded parts or in CFRP parts, and commercialize its practical application to various fields.