• 제목/요약/키워드: ultrasonic irradiation energy

검색결과 50건 처리시간 0.021초

Viscosity Characteristics of Waste Cooking Oil with Ultrasonic Energy Irradiation

  • Kim, Tae Han;Han, Jung Keun
    • Journal of Biosystems Engineering
    • /
    • 제37권6호
    • /
    • pp.429-433
    • /
    • 2012
  • Purpose: While rapeseed oil, soy bean oil, palm oil and waste cooking oil are being used for biodiesel, the viscosity of them should be lowered for fuel. The most widely used method of decreasing the viscosity of vegetable oil is to convert the vegetable oil into fatty acid methyl ester but is too expensive. This experiment uses ultrasonic energy, instead of converting the vegetable oil into fatty acid methyl ester, to lower the viscosity of the waste cooking oil. Methods: For irradiation treatment, the sample in a beaker was irradiated with ultrasonic energy and the viscosity and temperature were measured with a viscometer. For heating treatment, the sample in a beaker was heated and the viscosity and temperature were measured with a viscometer. Kinematic viscosity was calculated by dividing absolute viscosity with density. Results: The kinematic viscosity of waste cooking oil and cooking oil are up to ten times as high as that of light oil at room temperature. However, the difference of two types of oil decreased by four times as the temperature increased over $83^{\circ}C$. When the viscosity by the treatment of ultrasonic energy irradiation was compared to one by the heating treatment to the waste cooking oil, the viscosity by the treatment of ultrasonic energy irradiation was lower by maximum of 22% and minimum of 12%, than one by the heating treatment. Conclusions: Ultrasonic energy irradiation lowered the viscosity more than the heating treatment did, and ultrasonic energy irradiation has an enormous effect on fuel reforming.

초음파진동 조사장 내에서 Al-Pb계 합금의 제조 및 조직 (Fabrication and Microstructures of Al-Pb Alloy in the Ultrasonic Vibration)

  • 박헌범
    • 한국주조공학회지
    • /
    • 제22권5호
    • /
    • pp.238-244
    • /
    • 2002
  • Water and oil were completely synthesised with ultrasonic vibration energy irradiation. Pure Pb were added into Al melt during irradiated the ultrasonic vibration energy in 750. And the ultrasonic vibration energy was applied to Al-Pb melt to enhance the miscibility. Microstructural analysis, thermal analysis and X-ray diffraction analysis were carried out to evaluate the effect of the ultrasonic vibration energy on the castability and microstructural reliability. (1) Using the ultrasonic vibration energy irradiation, the complete mixing of water and oil was obtained. (2) The microstructure was refined by the application of ultrasonic vibration energy in Al-Pb alloys. (3) Relatively large Pb particles, $5{\mu}m$ were most distributed alone the grain boundaries with fine Pb particles evenly distributed in the matrix. (4) The solubility of Ph in Al-Pb alloys was increases up to 5% with the application of ultrasonic vibration energy.

초음파 개질 경유의 연료특성과 연소특성의 상관관계에 관한 연구 (II) -화학구조와 세탄가의 상관성- (A Study on Relationship between Fuel Characteristics and Combustion Characteristics of Reformed Diesel Fuels by Ultrasonic Energy Irradiation (II) - Relationship between Chemical Structure and Cetane Number -)

  • 이병오;류정인
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.64-71
    • /
    • 2003
  • In order to analyze the effect of the chemical structure and the cetane number of reformed diesel fuels by ultrasonic energy irradiation, proton nuclear magnetic resonance spectrometer$(^1H-NMR)$ was used. From the study, following conclusive remarks can be made. 1) Branch Index(BI), aromatics percentages, and alpha methyl radical$(H_{\alpha})$ of the reformed diesel fuels by ultrasonic energy irradiation decreased more than the conventional ones. 2) All the cetane numbers which were calculated from carbon type structure and hydrogen type distribution of the reformed diesel fuels increased more than the conventional ones. 3) It is more reasonable to predict cetane number equation from carbon type structure than from hydrogen type distribution. 4) BI, aromatics percentages, and $H_{\alpha}$ on both for conventional fuel and reformed diesel fuels by ultrasonic energy irradiation are inversely proportional to cetane number fur these fuels.

초음파 에너지 조사에 따른 바이오 디젤 특성 (Characteristics of Bio-diesel according to Irradiation for Ultrasonic Energy)

  • 박충열;최두석
    • 한국자동차공학회논문집
    • /
    • 제23권2호
    • /
    • pp.214-220
    • /
    • 2015
  • Since resources of fossil fuels are limited, development of alternative energies is emphasized and research on new-regenerative energy is actively in progress worldwide. In present research, physical and chemical characteristics of mixed fuel are analyzed in detail for the different mixture rate of conventional and bio-diesel and ultrasonic irradiation time. Experimental setup consists of ultrasonic generator, vibrator, horn, and reflector. Various physical and chemical characteristics of fuel are investigated for volumetric mixture rate of bio-diesel from 0 to 100%. As results, viscosity and surface tension is increased as mixture rate of bio-diesel is increased. Also, molecular splits and reunions are increased and decreased repeatedly after some period of time as ultrasonic energy irradiation time is increased. As conclusion of experiments, Olefin rate, Branch index, and Aromatic rate are influenced by ultrasonic irradiation time.

초음파 에너지 조사 시간과 분사지연에 따른 BD20의 디젤기관 연소특성에 관한 실험 연구 (An Experiment Study on the Combustion Characteristics with BD20 according to Ultrasonic Energy Irradiation Duration and Injection Delay in a Diesel Engine)

  • 임석연;이호길;류정인
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.38-46
    • /
    • 2008
  • An object of this study is to understand the correlation between the characteristics of an engine performance and combustion characteristics, applying BD20 fuel reformed by ultrasonic energy irradiation to diesel engines. Before conducting the main experiment, an experiment was performed to determine the optimum injection timimg of reformed BD20 by ultrasonic energy irradiation. To control the duration of the ultrasonic energy irradiation, the capacity of an ultrasonic energy fuel supply system was tested with 550cc and 1100cc chambers. As the result of the analysis of the regular BD20 and reformed BD20 by ultrasonic energy irradiation, the BSFC and the Power of the reformed BD20 was improved 3% and 6%, respectively compared to those of non-irradiated BD20. When the fuel injection timing was delayed by $5^{\circ}$, the engine power was improved by 3%, and the BSFC was improved by 2%. The maximum cylinder pressure of reformed BD20 was improved by a maximum of 6% in comparison to that of regular BD20, and demonstrated a synergistic effect of 3% by delaying the injection timing $5^{\circ}$.

초음파 에너지 조사 고 점도 바이오디젤 혼합연료의 미립화 특성에 관한 연구 (A Study on the Atomization Characteristics of the Ultrasonic-Energy-Irradiation High Viscosity Biodiesel Blended Fuel)

  • 송용식;양인권;김봉석;류정인
    • 에너지공학
    • /
    • 제13권4호
    • /
    • pp.235-241
    • /
    • 2004
  • 본 연구는 초음파 개질 바이오 디젤유의 점도와 표면장력에 대한 연료의 물리적 특성, 분무 미립화 특성에 관한 심층적이고 체계적인 연구에 중점을 두었다. 이를 규명하기 위하여 초음파 재질 연료와 개질 되지 않은 연료의 상대 비교 분석을 통한 연료특성과 연료분사펌프의 회전수 및 노즐선단 거리변화에 의한 입경측정의 상관성을 정립하였다.

초음파 에너지가 mn-Zn Ferrite 분체에 미치는 영향 (Effects of Ultrasonic Energy on Mn-Zn Ferrite Powder Behavior)

  • 이경직;이대희;이석기;이병교
    • 한국세라믹학회지
    • /
    • 제36권7호
    • /
    • pp.751-755
    • /
    • 1999
  • Effect of ultrasonic-wave irradiation on the Mn-Zn ferrite powder suspension prepared by solid-state reaction and alcoholic dehydration methods was investigated. Size distribution and morphology of the powders prepared at different temperature were examined as a function of irradiation time. It was observed that the powders were reduced in size by ultrasonic energy through distinct routes.

  • PDF

Facile and Room Temperature Preparation and Characterization of PbS Nanoparticles in Aqueous [EMIM][EtSO4] Ionic Liquid Using Ultrasonic Irradiation

  • Behboudnia, M.;Habibi-Yangjeh, A.;Jafari-Tarzanag, Y.;Khodayari, A.
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.53-56
    • /
    • 2009
  • At room-temperature, a facile, seedless, and environmentally benign green route for the synthesis of star like PbS nanoclusters at 7 min in aqueous solution of 1-ethyl-3-methylimidazolium ethyl sulfate, [EMIM] [$EtSO_{4}$], room-temperature ionic liquid (RTIL), via ultrasonic irradiation is proposed. The X-ray diffraction studies display that the products are excellently crystallized in the form of cubic structure. An energy dispersive X-ray spectroscopy (EDX) investigation reveals the products are extremely pure. The absorption spectra of the product exhibit band gap energy of about 4.27 eV which shows an enormous blue shift of 3.86 eV that can be attributed to very small size of PbS nanoparticles produced and quantum confinement effect. A possible formation mechanism of the PbS nanoparticles using ultrasonic irradiation in aqueous solution of the RTIL is presented.

초음파 조사가 직접 접촉식 막증발 공정의 막오염과 막젖음에 미치는 영향 (Effect of ultrasonic irradiation on membrane fouling and membrane wetting in direct contact membrane distillation process)

  • 장용선;최용준;이상호
    • 상하수도학회지
    • /
    • 제30권3호
    • /
    • pp.343-350
    • /
    • 2016
  • Membrane distillation (MD) is a novel separation process that have drawn attention as an affordable alternative to conventional desalination processes. However, membrane fouling and pore wetting are issues to be addressed prior to widespread application of MD. In this study, the influence of ultrasonic irradiation on fouling and wetting of MD membranes was investigated for better understanding of the MD process. Experiments were carried out using a direct contact membrane distillation apparatus Colloidal silica was used as a model foulants in a synthetic seawater (35,000 mg/L NaCl solution). A vibrator was directed attached to membrane module to generate ultrasonic waves from 25 kHz (the highest energy) to 75 kHz (the lowest energy). Flux and TDS for the distillate water were continuously monitored. Results suggested that ultrasonic irradiation is effective to retard flux decline due to fouling only in the early stage of the MD operation. Moreover, wetting occurred by a long-term application of ultrasonic rradiation at 75 kHz. These results suggest that the conditions for ultrasonic irradiation should be carefully optimized to maximize fouling control and minimize pore wetting.

초음파 개질 경유의 연료특성과 연소특성의 상관관계에 관한 연구 (I) -화학구조와 발열량과의 상관성 (A Study on Relationship between Fuel Characteristics and Combustion Characteristics of Reformed Diesel Fuels by Ultrasonic Irradiation (I) - Relationship between Chemical Structure and Higher Heating Value)

  • 이병오;류정인
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.72-79
    • /
    • 2002
  • The main objective of this study is to investigate the relationship between chemical structure and higher heating value of reformed diesel fuels by ultrasonic irradiation. In order to analyze the chemical structure changes of the reformed diesel fuels by ultrasonic irradiation, Proton nuclear magnetic resonance spectrometer(1H-NMR) was used and to analyze the effect of higher heating values of these diesel fuels, the bomb calorimeter was used. From the study, following conclusive remarks can be made. 1) The aromatic carbon percentages and higher heating values of the reformed diesel fuels by ultrasonic irradiation increased more than the conventional diesel ones. 2) The aromatics percentages and Branch Index(BI) of the reformed diesel fuels by ultrasonic irradiation decreased more than the conventional diesel ones. 3) The higher heating values on both for conventional fuel and reformed diesel fuels by ultrasonic energy irradiation is directly proportional to aromatic carbon percentages and inversely proportional to aromatic percentages and BI for these fuels.