• Title/Summary/Keyword: ultrasonic diffraction

Search Result 123, Processing Time 0.024 seconds

Mineralogy of Size Fractions in Sancheong Kaolin and Its Origin (산청고령토 입도분리시료들의 광물조성 변화와 그 원인)

  • Jeong, Gi-Young;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.22-31
    • /
    • 1992
  • The Sancheong kaolin was fractionated into 9 size fractions by wet sieving, sedimentation, and centrifugation. The systematic X-ray diffraction combined with electron microscopy shows that the clay mineral composition of each size fraction is related to the original fabric of kaolin. Minerals such as halloysite (10${\AA}$), kaolinite, illite, and goethite which were formed by procipitation from solution are generally concentrated in the finer fractions, whereas verniculite which was formed by pseudomorphic transformation from other primary minerals are concentrated in the coarser factions. Kaolinits of various types which were formed by precipitation or transformation show a wide size range but they are generally concentrated in the coarser fractions. Halloysite or halloysite-kaolinite clusters in coarse fractions are the fragmentation products of the walls of original boxwork clusters in coarse fractions are the fragmentation products of the walls of original boxwork kaolin which escaped the complete dispersion even through the grinding, ultrasonic agitation, and chemical treatment. Separation of fully hydrated halloysite and kaolinite was possible by systematic wet size fractionation. The coarse-grained minerals such as vermiculite and kaolinite are usually removed during the preparation of clay fraction smaller than 2${\mu}m$, whereas the fine-grained minerals such as illite and goethite are overlooked in X-ray diffraction of the bulk samples because of their minor contents. The systematic wet size fractionation is needed for understanding of the exact mineralogy of kaolin of weathering origin.

  • PDF

Sonochemical Synthesis and Photocatalytic Characterization of ZnO Nanoparticles (초음파 방법을 이용한 ZnO 나노입자 합성 및 광촉매 특성 연구)

  • Kim, Min-Seon;Kim, Jae-Uk;Yoo, Jeong-Yeol;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.34-38
    • /
    • 2016
  • In this paper, zinc oxide nanoparticles (ZnO NPs) were synthesized using the sonochemical method, where equimolar amounts of zinc acetate dehydrate and sodium hydroxide were separately dissolved in deionized water, and then mixed for 30 min under magnetic stirring. The resultant white gel was sonicated for 60, 120, 180, 240, and 360 min with magnetic stirring. The obtained precipitates were centrifuged, repeatedly washed with ethanol to remove ionic impurities, and dried at 50 ℃ for 24 h. The formation of pure NPs was confirmed by X-ray diffraction, and their crystallinity and crystal phases were analyzed as well. Structural investigation was carried out by field-emission scanning electron microscopy (FE-SEM). The photocatalysis behavior of the ZnO NPs was investigated in a dark room under UV irradiation, using Rhodamine B. Spherical, rod, and flower-like ZnO NPs could be obtained by adjusting the sonication time, as observed by FE-SEM. The flower-like ZnO NPs exhibited excellent photocatalytic activity.

Synthesis of Zinc Ferrite Nanocrystallites using Sonochemical Method (음향화학법을 이용한 아연페라이트 나노입자의 합성)

  • Cho, Jun-Hee;Ko, Sang-Gil;Ahn, Yang-Kyu;Kang, Kun-Uk;An, Dong-Hyun;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.71-75
    • /
    • 2007
  • Ultrasonic irradiation in a solution during the chemical reaction may accelerate the rate of the reaction and the crystallization at low temperature. We have synthesized nanometer sized zinc ferrite particles using chemical co-precipitation technique through a sonochemical method with surfactant such as oleic acid. The thermal behaviour of the zinc ferrite was determined by the thermoanalytical techniques (TGA-DSC). Powder X-ray diffraction measurements show that the samples have the spinel structure. Magnetic properties measurement were performed using a superconducting quantum interference device (SQUID) magnetometer.

Facile Synthesis of g-C3N4 Modified Bi2MoO6 Nanocomposite with Improved Photoelectronic Behaviors

  • Zhu, Lei;Tang, Jia-Yao;Fan, Jia-Yi;Sun, Chen;Meng, Ze-Da;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.593-600
    • /
    • 2021
  • Herein, a series of g-C3N4 modified Bi2MoO6 nanocomposites using Bi2MoO6 and melamine as original materials are fabricated via sintering process. For presynthesis of Bi2MoO6 an ultrasonic-assisted hydrothermal technique is researched. The structure and composition of the nanocomposites are characterized by Raman spectroscopy, X-ray diffraction (XRD), and high-resolution field emission scanning electron microscopy (SEM). The improved photoelectrochemical properties are studied by photocurrent density, EIS, and amperometric i-t curve analysis. It is found that the structure of Bi2MoO6 nanoparticles remains intact, with good dispersion status. The as-prepared g-C3N4/Bi2MoO6 nanocomposites (BMC 5-9) are selected and investigated by SEM analysis, which inhibits special morphology consisting of Bi2MoO6 nanoparticles and some g-C3N4 nanosheets. The introduction of small sized g-C3N4 nanosheets in sample BMC 9 is effective to improve the charge separation and transfer efficiency, resulting in enhancing of the photoelectric behavior of Bi2MoO6. The improved photoelectronic behavior of g-C3N4/Bi2MoO6 may be attributed to enhanced charge separation efficiency, photocurrent stability, and fast electron transport pathways for some energy applications.

Effect of limestone calcined clay cement (LC3) on the fire safety of concrete structures

  • Gupta, Sanchit;Singh, Dheerendra;Gupta, Trilok;Chaudhary, Sandeep
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.263-278
    • /
    • 2022
  • Limestone calcined clay cement (LC3) is a low carbon alternative to conventional cement. Literature shows that using limestone and calcined clay in LC3 increases the thermal degradation of LC3 pastes and can increase the magnitude of fire risk in LC3 concrete structures. Higher thermal degradation of LC3 paste prompts this study toward understanding the fire performance of LC3 concrete and the associated magnitude of fire risk. For fire performance, concrete prepared using ordinary Portland cement (OPC), pozzolanic Portland cement (PPC) and LC3 were exposed to 16 scenarios of different elevated temperatures (400℃, 600℃, 800℃, and 1000℃) for different durations (0.5 h, 1 h, 2 h, and 4 h). After exposure to elevated temperatures, mass loss, residual ultrasonic pulse velocity (rUPV) and residual compressive strength (rCS) were measured as the residual properties of concrete. XRD (X-ray diffraction), TGA (thermogravimetric analysis) and three-factor ANOVA (analysis of variance) are also used to compare the fire performance of LC3 with OPC and PPC. Monte Carlo simulation has been used to assess the magnitude of fire risk in LC3 structures and devise recommendations for the robust application of LC3. Results show that LC3 concrete has weaker fire performance, with average rCS being 11.06% and 1.73% lower than OPC and PPC concrete. Analysis of 106 fire scenarios, in Indian context, shows lower rCS and higher failure probability for LC3 (95.05%, 2.22%) than OPC (98.16%, 0.22%) and PPC (96.48%, 1.14%). For robust application, either LC3 can be restricted to residential and educational structures (failure probability <0.5%), or LC3 can have reserve strength (factor of safety >1.08).

Gradient Microstructure and Mechanical Properties of Fe-6%Mn Alloy by Different Sized Powder Stacking (다른 크기의 분말 적층을 통해 얻은 Fe-6%Mn합금의 경사 미세조직과 기계적 특성)

  • Seo, Namhyuk;Lee, Junho;Shin, Woocheol;Jeon, Junhyub;Park, Jungbin;Son, Seung Bae;Jung, Jae-Gil;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.382-389
    • /
    • 2022
  • A typical trade-off relationship exists between strength and elongation in face-centered cubic metals. Studies have recently been conducted to enhance strength without ductility reduction through surface-treatment-based ultrasonic nanocrystalline surface modification (UNSM), which creates a gradient microstructure in which grains become smaller from the inside to the surface. The transformation-induced plasticity effect in Fe-Mn alloys results in excellent strength and ductility due to their high work-hardening rate. This rate is achieved through strain-induced martensitic transformation when an alloy is plastically deformed. In this study, Fe-6%Mn powders with different sizes were prepared by high-energy ball milling and sintered through spark plasma sintering to produce Fe-6%Mn samples. A gradient microstructure was obtained by stacking the different-sized powders to achieve similar effects as those derived from UNSM. A compressive test was performed to investigate the mechanical properties, including the yielding behavior. The deformed microstructure was observed through electron backscatter diffraction to determine the effects of gradient plastic deformation.

Impact of nanocomposite material to counter injury in physical sport in the tennis racket

  • Hao Jin;Bo Zhang;Xiaojing Duan
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.435-442
    • /
    • 2023
  • Sports activities, including playing tennis, are popular with many people. As this industry has become more professionalized, investors and those involved in sports are sure to pay attention to any tool that improves athletes' performance Tennis requires perfect coordination between hands, eyes, and the whole body. Consequently, to perform long-term sports, athletes must have enough muscle strength, flexibility, and endurance. Tennis rackets with new frames were manufactured because tennis players' performance depends on their rackets. These rackets are distinguished by their lighter weight. Composite rackets are available in many types, most of which are made from the latest composite materials. During physical exercise with a tennis racket, nanocomposite materials have a significant effect on reducing injuries. Materials as strong as graphite and thermoplastic can be used to produce these composites that include both fiber and filament. Polyamide is a thermoplastic typically used in composites as a matrix. In today's manufacturing process, materials are made more flexible, structurally more vital, and lighter. This paper discusses the production, testing, and structural analysis of a new polyamide/Multi-walled carbon nanotube nanocomposite. This polyamide can be a suitable substitute for other composite materials in the tennis racket frame. By compression polymerization, polyamide was synthesized. The functionalization of Multi-walled carbon nanotube (MWCNT) was achieved using sulfuric acid and nitric acid, followed by ultrasonic preparation of nanocomposite materials with weight percentages of 5, 10, and 15. Fourier transform infrared (FTIR) and Nuclear magnetic resonance (NMR) confirmed a synthesized nanocomposite structure. Nanocomposites were tested for thermal resistance using the simultaneous thermal analysis (DTA-TG) method. scanning electron microscopy (SEM) analysis was used to determine pores' size, structure, and surface area. An X-ray diffraction analysis (XRD) analysis was used to determine their amorphous nature.

The Effects of Na2CO3 on Early Strength of High Volume Slag Cement (대량치환 슬래그 시멘트의 초기강도에 미치는 Na2CO3의 영향)

  • Kim, Tae-Wan;Hahm, Hyung-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.349-356
    • /
    • 2016
  • This report presents the results of an investigation on the early strength development of pastes high volume slag cement (HVSC) activated with different concentration of sodium carbonate ($Na_2CO_3$). The ordinary Portland cement (OPC) was replaced by ground granulated blast furnace slag (GGBFS) from 50% to 90% by mass, the dry powders were blended before the paste mixing. The $Na_2CO_3$ was added at 0, 2, 4, 6, 8 and 10% by total binder (OPC+GGBFS) weight. A constant water-to-binder ratio (w/b)=0.45 was used for all mixtures. The research carried out the compressive strength, ultrasonic pulse velocity (UPV), water absorption and X-ray diffraction (XRD) analysis at early ages(1 and 3 days). The incase of mixtures, V5 (50% OPC + 50% GGBFS), V6 (40% OPC + 60% GGBFS) and V7 (30% OPC + 70% GGBFS) specimens with 6% $Na_2CO_3$, V8 (20% OPC + 80% GGBFS) and V9 (10% OPC + 90% GGBFS) specimens with 10% $Na_2CO_3$ showed the maximum strength development. The results of UPV and water absorption showed a similar tendency to the strength properties. The XRD analysis of specimens indicated that the hydration products formed in samples were CSH and calcite phases.

A Study on the Fabrication and Characteristics of ITO Thin Film Deposited by Magnetron Sputtering Method (마그네트론 스퍼터링법을 이용한 Indium-Tin Oxide 박막의 제작과 그 특성에 관한 연구)

  • 조길호;김여중;김성종;문경만;이명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.61-69
    • /
    • 2000
  • Indium-Tin Oxide (ITO) films were prepared on the commercial glass substrate by the Magnetron Sputtering method. The target was a 90wt.% $In_2O_3$-10wt.% $SnO_2$with 99.99% purity. The ITO films deposited by changing the partial pressure of oxygen gas ($O_2$/(Ar+$O_2$)) of 2, 3 and 5% as well as by changing the substrate temperature of $300^{\circ}C$ or $500^{\circ}C$. The influence of substrate pre-annealing and pre-cleaning on the quality of ITO film were examined, in which the substrate temperature was $500^{\circ}C$ and oxygen partial pressure was 3%. The characteristics of films were examined by the 4-point probe, Hall effect measurement system, SEM, AFM, Spectrophotometer, and X-ray diffraction. The optimum ITO films have been obtained when the substrate temperature is $500^{\circ}C$ and oxygen partial pressure is 3%. At optimum condition, the film showed transmittance of 81%, sheet resistivity of $226\Omegatextrm{cm}^2$, resistivity($\rho$) of $5.4\times10^{-3}\Omega$cm, carrier concentration of $1.0\times10^{19}cm^{-3}$, and carrier mobility of $150textrm{cm}^2$Vsec. From XRD spectrum, c(222) plane was dominant in the case of substrate temperature at $300^{\circ}C$, without regarding to oxygen partial pressure. However, in the case of substrate temperature at $500^{\circ}C$, c(400) plane was grown together with c(222) plane, only for oxygen partial pressure of 2 and 3%. In both case of chemical and ultrasonic cleaning without pre-annealing the substrate, it showed much almost same sheet resistivity, resistivity($\rho$), transmittance, carrier concentration, and carrier mobility. In case of $500^{\circ}C$/60min pre-annealing before ITO film deposited, both transimittance and carrier mobility are better than no pre-annealing, because pre-annealing is supposed to remove alkari ions diffusion from substrate. ITO film deposited on the Corning 0080 sybstrate showed a little bit better sheet resistivity, resistivity($\rho$), transimittance, carrier concentration than the film deposited on commercial glass. But no differences between Corning substrate and pre-annealed commercial glass substrate are found.

  • PDF

The Fundamental Characteristics for Mix Proportion of Multi-Component Cement (배합비에 따른 다성분계 시멘트의 기초특성)

  • Kim, Tae-Wan;Jeon, Jae-Woo;Seo, Min-A;Jo, Hyeon-Hyeong;Bae, Su-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.66-74
    • /
    • 2016
  • The aim of this research work is to investigate the mix proportion of multi-component cement incorporating ground granulated blast furnace(GGBFS), fly ash(FA) and silica fume(SF) as an addition to cement in ternary and quaternary combinations. The water-binder ratio was 0.45. In this study, 50% and 60% replacement ratios of mineral admixture to OPC was used, while series of combination of 20~40% GGBFS, 5~35% FA and 0~15% SF binder were used for fundamental characteristics tests. This study concern the GGBFS/FA ratio and SF contents of multi-component cement including the compressive strength, water absorptions, ultrasonic pulse velocity(UPV), drying shrinkage and X-ray diffraction(XRD) analysises. The results show that the addition of SF can reduce the water absorption and increase the compressive strength, UPV and drying shrinkage. These developments in the compressive strength, UPV and water absorption can be attributed to the fact that increase in the SF content tends basically to consume the calcium hydroxide crystals released from the hydration process leading to the formation of further CSH(calcium silicate hydrate). The strength, water absorption and UPV increases with an increase in GGBFS/FA ratios for a each SF contents. The relationship between GGBFS/FA ratios and compressive strength, water absorption, UPV is close to linear. It was found that the GGBFS/FA ratio and SF contents is the key factor governing the fundamental properties of multi-component cement.