• 제목/요약/키워드: ultrasonic diffraction

검색결과 123건 처리시간 0.027초

초음파 합성 적용 Cu2O-TiO2 (P-N 타입) 반도체 나노물질의 가시광 활성 평가 (Evaluation of Visible-light activation of Cu2O-TiO2 (P-N type) Semiconductor Nanomaterials prepared by Ultrasonic-assisted Synthesis)

  • 신승호;최정학;김지훈;이준엽
    • 한국환경과학회지
    • /
    • 제28권11호
    • /
    • pp.971-981
    • /
    • 2019
  • This study evaluated the photocatalytic oxidation efficiency of volatile organic compounds by $Cu_2O-TiO_2$ under visible-light irradiation. $Cu_2O-TiO_2$ was synthesized by an ultrasonic-assisted method. The XRD result indicated successful p-n type photocatalysts. However, no diffraction peaks belonging to $TiO_2$ were observed for the $Cu_2O-TiO_2$. The Uv-vis spectra result revealed that the synthesized $Cu_2O-TiO_2$ can be activated under visible-light irradiation. The FE-TEM/EDS result showed the formation of synthesized nanocomposites in the commercial P25 $TiO_2$, the undoped $TiO_2$, and $Cu_2O-TiO_2$ and componential analysis in the undoped $TiO_2$ and $Cu_2O-TiO_2$. The photocatalytic oxidation efficiencies of benzene, toluene, ethylbenzene, and o-xylene with $Cu_2O-TiO_2$ were higher than those of P25 $TiO_2$ and undoped $TiO_2$. These results indicate that the prepared $Cu_2O-TiO_2$ photocatalyst can be applied effectively to control gaseous BTEX.

Identification of nonregular indication according to change of grain size/surface geometry in nuclear power plant (NPP) reactor vessel (RV)-upper head alloy 690 penetration

  • Kim, Kyungcho;Kim, Changkuen;Kim, Hunhee;Kim, Hak-Joon;Kim, Jin-Gyum;Jhung, Myungjo
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1524-1536
    • /
    • 2017
  • During the fabrication process of reactor vessel head penetration (RVHP), the grain size of the tube material can be changed by hot or cold work and the inner side of the tube can also be shrunk due to welding outside of the tube. Several nonregular time-of-flight diffraction (TOFD) signals were found because of deformed grains. In this paper, an investigation of nonregular TOFD indications acquired from RVHP tubes using experiments and computer simulation was performed in order to identify and distinguish TOFD signals by coarse grains from those by Primary Water Stress Corrosion Crack (PWSCC). For proper understanding of the nonregular TOFD indications, microstructural analysis of the RVHP tubes and prediction of signals scattered from the grains using Finite Element Method (FEM) simulation were performed. Prediction of ultrasonic signals from the various sizes of side drilled holes to find equivalent flaws, determination of the size of the nonregular TOFD indications from the coarse grains, and experimental investigation of TOFD signals from coarse grain and shrinkage geometry to identify PWSCC signals were performed. From the computer simulation and experimental investigation results, it was possible to obtain the nonregular TOFD indications from the coarse grains in the alloy 690 penetration tube of RVHP; these nonregular indications may be classified as PWSCC. By comparing the computer simulation and experimental results, we were able to confirm a clear difference between the coarse grain signal and the PWSCC signal.

PNN 치환에 따른 PMW-PNN-PZT-BF 세라믹스의 미세구조와 압전 특성 (Microstructure and Piezoelectric Properties of Low Temperature Sintering PMW-PNN-PZT-BF Ceramics According to PNN Substitution)

  • 신상훈;류주현
    • 한국전기전자재료학회논문지
    • /
    • 제29권2호
    • /
    • pp.90-94
    • /
    • 2016
  • In this work, [$Pb(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_x(Zr_{0.5}Ti_{0.5})_{0.97-x}O_3-BiFeO_3$] (x=0.02 to 0.12) composition ceramics were fabricated by the conventional soild state reaction method and their microstructure and piezoelectric properties were investigated according to PNN substitution. The addition of small amount of $BiFeO_3$, $Li_2CO_3$, and $CaCO_3$ were used in order to decrease the sintering temperature of the ceramics. The XRD (x-ray diffraction patterns) of all ceramics exhibited a perovskite structure. The sinterability of PMW-PNN-PZT-BF ceramics was remarkably improved using liquid phase sintering of $CaCO_3$, $Li_2CO_3$. However, it was identified from of the X-ray diffraction patterns that the secondary phase formed in grain boundaries decreased the piezoelectric properties. According to the substitution of PNN, the crystal structure of ceramics is transformed gradually from a tetragonal to rhombohedral phase. The x=0.10 mol PNN-substituted PMW-PNN-PZT-BF ceramics sintered at $920^{\circ}C$ showed the optimum values of piezoelectric constant($d_{33}$), piezoelectric figure of merit($d_{33{\cdot}}g_{33}$), planar piezoelectric coupling coefficient($k_p$) and density : $d_{33}=566$ [pC/N], $g_{33}=29.28[10^{-3}mV/N]$, $d_{33{\cdot}}g_{33}=16.57[pm^2/N]$, $k_p=0.61$, density=7.82 [$g/cm^3$], suitable for duplex ultrasonic sensor application.

압축 센싱을 이용한 주파수 영역의 초음파 감쇠 지수 예측 (Estimation of Ultrasonic Attenuation Coefficients in the Frequency Domain using Compressed Sensing)

  • 심재윤;김형석
    • 전자공학회논문지
    • /
    • 제53권6호
    • /
    • pp.167-173
    • /
    • 2016
  • 압축 센싱은 기존의 섀넌/나이키스트 이론보다 낮은 샘플링률로 신호를 샘플링 하여도 원신호로 복원할 수 있다는 이론이다. 본 논문에서는 압축 센싱을 이용하여 반향 신호의 정량적 주파수 특성을 직접 추출하여 이를 이용한 초음파 감쇠 지수 예측 방법을 제안한다. 일반적인 초음파 감쇠 지수 예측 방법들은 시간 영역에서 수집된 반향 신호를 Fourier 변환 등을 통해 주파수 영역으로 변환하는데, 제안하는 예측 방법은 압축 센싱으로 수집된 데이터를 복원하는 과정에서 적용하는 basis 행렬을 이용하여 시간 영역으로의 완전한 신호 복원 없이 반향 신호의 주파수 특성을 직접 추출하여 감쇠 지수를 예측한다. 3가지의 basis 행렬을 통해 주파수 영역에서 복원된 반향 신호에 대하여 다중 참조 신호를 이용한 Centroid Downshift 방법으로 감쇠 지수를 예측하여 각각의 예측 정확도와 실행 시간을 비교 분석하였다. 컴퓨터 모의 실험 결과 이산 코사인 변환(DCT) 행렬을 적용하는 경우, 50%의 압축률에서는 압축 센싱을 적용하지 않은 경우와 0.35% 이내의 예측 정확도를 보였으며, 압축률을 70%까지 높이는 경우에도 약 6% 이내의 평균 예측 오차를 보였다. 제안한 압축 센싱을 적용한 반향 신호의 주파수 특성 추출 방법은 향후 주파수 영역의 다른 정량적 초음파 분석 방법에 적용할 수 있다.

초음파 열분해법를 이용한 ZnO 성장 (Growth of ZnO Film by an Ultrasonic Pyrolysis)

  • 김길영;정연식;변동진;최원국
    • 한국세라믹학회지
    • /
    • 제42권4호
    • /
    • pp.245-250
    • /
    • 2005
  • 단결정 사파이어 (0001) 기판 위에 저가의 초산아연(Zinc Acetate Dehydrate; ZAH) 전구체를 이용하여 초음파 열분해법과 Ar 가스를 이용한 ZnO 박막을 성장시켰다. Thermogravimetry-Differential Scanning Calorimetry(TG-DSC) 초산아연의 열분해 과정을 조사하여 $380^{\circ}C$ 이상에서 ZnO로 분해되는 것을 확인하였다. $380-700^{\circ}C$에서 증착된 ZnO 박막은 모두 ZnO (002), (101) 결정면으로 부터의 회절피크를 보여주고 있었으며, $400^{\circ}C$ 박막의 경우 c-압축 스트레인 ${\Sigma}Z=0.2\%$, 압축 응력 $\sigma=-0.907\;GPa$이 작용하고 있음을 알 수 있었다. 전자 현미경을 이용한 미세 구조의 관찰을 통하여 $380-600^{\circ}C$에서는 초산아연과 ZnO 초미세 입자가 혼합된 aggregate 형태의 결정립을 형성하고 있었으며, nanoblade 형태의 미세구조를 보였다. 한편 $700^{\circ}C$에서 증착된 박막내의 결정립은 찌그러진 육방정계의 형태를 취하고 있으며, 10-25nm 정도의 부결정림 초미세 ZnO 입자로 이루어져 있음을 알 수 있었다. 초미세 입자의 형성을 임의 핵형성 기구(random nucleation mechanism)로 설명하였고, photoluminescence(PL) 측정을 통하여 광 특성을 조사하였다.

초음파 분무 열분해와 화학적 변환 공정을 이용한 (GaN)1-x(ZnO)x 나노입자의 합성과 광학적 성질 (Synthesis and Optical Property of (GaN)1-x(ZnO)x Nanoparticles Using an Ultrasonic Spray Pyrolysis Process and Subsequent Chemical Transformation)

  • 김정현;류철희;지명준;최요민;이영인
    • 한국분말재료학회지
    • /
    • 제28권2호
    • /
    • pp.143-149
    • /
    • 2021
  • In this study, (GaN)1-x(ZnO)x solid solution nanoparticles with a high zinc content are prepared by ultrasonic spray pyrolysis and subsequent nitridation. The structure and morphology of the samples are investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The characterization results show a phase transition from the Zn and Ga-based oxides (ZnO or ZnGa2O4) to a (GaN)1-x(ZnO)x solid solution under an NH3 atmosphere. The effect of the precursor solution concentration and nitridation temperature on the final products are systematically investigated to obtain (GaN)1-x(ZnO)x nanoparticles with a high Zn concentration. It is confirmed that the powder synthesized from the solution in which the ratio of Zn and Ga was set to 0.8:0.2, as the initial precursor composition was composed of about 0.8-mole fraction of Zn, similar to the initially set one, through nitriding treatment at 700℃. Besides, the synthesized nanoparticles exhibited the typical XRD pattern of (GaN)1-x(ZnO)x, and a strong absorption of visible light with a bandgap energy of approximately 2.78 eV, confirming their potential use as a hydrogen production photocatalyst.

ZnO buffer 층을 이용한 초음파 분무열분해 ZnO 박막 증착 (Spray Pyrolysis Deposition of Zinc Oxide Thin Films by ZnO Buffer Layer)

  • 한인섭;박일규
    • 한국재료학회지
    • /
    • 제27권8호
    • /
    • pp.403-408
    • /
    • 2017
  • We investigated the effect of ZnO buffer layer on the formation of ZnO thin film by ultrasonic assisted spray pyrolysis deposition. ZnO buffer layer was formed by wet solution method, which was repeated several times. Structural and optical properties of the ZnO thin films deposited on the ZnO buffer layers with various cycles and at various temperatures were investigated by field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence spectrum analysis. The structural investigations showed that three-dimensional island shaped ZnO was formed on the bare Si substrate without buffer layers, while two-dimensional ZnO thin film was deposited on the ZnO buffer layers. In addition, structural and optical investigations showed that the crystalline quality of ZnO thin film was improved by introducing the buffer layers. This improvement was attributed to the modulation of the surface energy of the Si surface by the ZnO buffer layer, which finally resulted in a modification of the growth mode from three to two-dimensional.

단일액상원료를 사용하는 MOCVD법에 의한 YBa$_2Cu_3O_x$ 박막 제조에 관한 연구 (Preparation of YBa$_2Cu_#O_x$ films by MOCVD using single liquid solution source)

  • 김보련;이희균;홍계원;지영아;신형식
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.129-132
    • /
    • 1999
  • A new single solution source MOCVD technique for the deposition of YBCO film has been developed, using a ultrasonic atomizer to feed the precursors into an evaporation zone. This method being investigated as a basis for future long wire fabrication, for example the electric power use, the magnatic applications, etc.. YBCO films were prepared on MgO(100) substrate, using mixture of Y, Ba, and Cu ${\beta}$ -diketonate chelate was dissolve in tetrahydrofuran as a solution sources. X-ray diffraction measurement indicated that the thin film grew epitaxially with the c-axis orientation perpandicular to the surface of the surface.

  • PDF

Combination of ultrasonic assisted liquid phase exfoliation process and oxidation-deoxidation method to prepare large-sized graphene

  • Qi, Lei;Guo, Ruibin;Mo, Zunli;Wu, Qijun
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.50-54
    • /
    • 2018
  • Large-size graphene samples are successfully prepared by combining ultrosonic assisted liquid phase exfoliation process with oxidation-deoxidation method. Different from previous works, we used an ultrasound-treated expanded graphite as the raw material and prepared the graphene via a facile oxidation-reduction reaction. Results of X-ray diffraction and Raman spectroscopy confirm the crystal structure of the as-prepared graphene. Scanning electron microscopy images show that this kind of graphene has a large size (with a diameter over $100{\mu}m$), larger than the graphene from graphite powder and flake graphite prepared through single oxidation-deoxidation method. Transmission electron microscopy results also reveal the thin layers of the prepared graphene (number of layers ${\leq}3$). Furthermore, the importance of preprocessing the raw materials is also proven. Therefore, this method is an attractive way for preparing graphene with large size.

Effect of Heat-Treated Temperature on Surface Crystal Structure and Catalytic Activity of ACF/ZnO Composite under Ultraviolet Irradiation and Ultrasonication

  • Zhang, Kan;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제47권2호
    • /
    • pp.136-141
    • /
    • 2010
  • ACF/ZnO photocatalyst was synthesized by a sol-gel method using activated carbon fiber (ACF) and Zn $(NO_3)_2$ as precursors. Samples were characterized by Brunauer-Emmett-Teller measurements (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX). The XRD results showed that ACF/ZnO composites only included a hexagonal phase by heat-treated temperature at $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$, and $700^{\circ}C$. The SEM analysis revealed that the ACF/ZnO composites did not exhibit any morphological changes of the catalyst surface according to the different heat-treated temperatures. The photocatalytic activity of the samples was tested for degradation of methylene blue (MB) solutions under ultraviolet (UV) light and ultrasonication respectively. The results showed that the photocatalytic activity of ACF/ZnO composites heat-treated at $500^{\circ}C$ was higher than other samples, which is ascribed to the fine distribution of ZnO particles on the surface of the ACF. In addition, an ultrasound of low power (50 W) was used as an irradiation source to successfully induce ACF/ZnO composites to perform sonocatalytic degradation of MB. Results indicated that the sonocatalytic method in the presence of ACF/ZnO composites is an advisable choice for the treatments of organic dyes.