• Title/Summary/Keyword: ultrasonic C-scan

Search Result 98, Processing Time 0.023 seconds

A Feasibility Study on the Application of Ultrasonic Method for Surface Crack Detection of SiC/SiC Composite Ceramics (SiC/SiC 복합재료 세라믹스 표면균열 탐지를 위한 초음파법 적용에 관한 기초연구)

  • Nam, Ki-Woo;Lee, Kun-Chan;Kohyama, Akira
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.479-484
    • /
    • 2009
  • Nondestructive evaluation(NDE) of ceramic matrix composites is essential for developing reliable ceramics for industrial applications. In the work, C-Scan image analysis has been used to characterize surface crack of SiC ceramics nondestructively. The possibility of detection of surface crack were carried out experimentally by two types of ultrasonic equipment of SDS-win and $\mu$-SDS, and three types of transducer of 25, 50 and 125 MHz. A surface micro-crack of ceramics was not detected by transducer of 25 MHz and 50 MHz. Though the focus method was detected dimly the crack by transducer of 125 MHz, the defocus method could detect the shape of diamond indenter. As a whole, the focus method and the defocus method came to the conclusion that micro crack have a good possibility for detection.

Development and Characterization of High Frequency Ultrasonic Transducer Using PVDF and P(VDF-TrFE) (PVDF 및 P(VDF-TrFE)를 이용한 고주파수 수침용 초음파 탐촉자 개발 및 평가)

  • Kim, Ki-Bok;Kim, Byoung-Geuk;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • The high frequency ultrasonic transducers using polyvinyliden fluoride(PVDF) and polyvinylidene fluoride trifluorethyylene(P(VDF-TrFE)) were developed. The characteristics of fabricated high frequency ultrasonic transducer such as beam diameter, high frequency ultrasonic detection field and amplitude of the first pulse echo signal from the test target in the water were analyzed. The high frequency ultrasonic detection field was affected by the length of coaxial cable between high frequency transducer and ultrasonic pulser/receiver. As the size of the test target increased, the high frequency detection field decreased and the amplitude of a reflection signal increased. The peak amplitude of the first pulse echo signal of P(VDF-TrFE) transducer was higher than that of PVDF transducer. The high frequency ultrasonic detection field of PVDF transducer was wider than that of P(VDF-TrFE) transducer. With C-scan testing, the developed high frequency ultrasonic transducer could detect the 30 to $100{\mu}m$ of hydrogen induced crack of steel specimen by C-scan testing.

Development of rotational pulse-echo ultrasonic propagation imaging system capable of inspecting cylindrical specimens

  • Ahmed, Hasan;Lee, Young-Jun;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.657-666
    • /
    • 2020
  • A rotational pulse-echo ultrasonic propagation imager that can inspect cylindrical specimens for material nondestructive evaluations is proposed herein. In this system, a laser-generated ultrasonic bulk wave is used for inspection, which enables a clear visualization of subsurface defects with a precise reproduction of the damage shape and size. The ultrasonic waves are generated by a Q-switched laser that impinges on the outer surface of the specimen walls. The generated waves travel through the walls and their echo is detected by a Laser Doppler Vibrometer (LDV) at the same point. To obtain the optimal Signal-to-Noise Ratio (SNR) of the measured signal, the LDV requires the sensed surface to be at a right angle to the laser beam and at a predefined constant standoff distance from the laser head. For flat specimens, these constraints can be easily satisfied by performing a raster scan using a dual-axis linear stage. However, this arrangement cannot be used for cylindrical specimens owing to their curved nature. To inspect the cylindrical specimens, a circular scan technology is newly proposed for pulse-echo laser ultrasound. A rotational stage is coupled with a single-axis linear stage to inspect the desired area of the specimen. This system arrangement ensures that the standoff distance and beam incidence angle are maintained while the cylindrical specimen is being inspected. This enables the inspection of a curved specimen while maintaining the optimal SNR. The measurement result is displayed in parallel with the on-going inspection. The inspection data used in scanning are mapped from rotational coordinates to linear coordinates for visualization and post-processing of results. A graphical user interface software is implemented in C++ using a QT framework and controls all the individual blocks of the system and implements the necessary image processing, scan calculations, data acquisition, signal processing and result visualization.

Evaluation of the Surface Crack by a Large Aperture Ultrasonic Probe (대구경 초음파 탐촉자를 이용한 표면균열 평가)

  • Cho, Yong-Sang;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.180-185
    • /
    • 2004
  • Conventional ultrasonic examination to detect micro and small surface cracks is based on the pulse-echo technique using a normal immersion focused transducer with high frequency, or an angle-beam transducer generating surface waves. It is difficult to make an automatic ultrasonic system that can detect micro and small surface cracks and position in a large structure like steel and ceramic rolls, because of the huge data of inspection and the ambiguous position data of the transducer. In this study, a high-precision scanning acoustic microscope with a 10MHz large-aperture transducer has been used to assess the existence, position and depth of a surface crack from the real-time A, B, C scans obtained by exploiting the ultrasonic diffraction. The ultrasonic method with large aperture transducer has improved the accuracy of the crack depth assessment and also the scanning speed by ten times, compared with the conventional ultrasonic methods.

A Study of the Measurements System in Electron Beam Welding (전자빔 용접 측정 시스템에 관한 연구)

  • Hong MinSung;Kim JongMin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.258-263
    • /
    • 2005
  • Because of its high performance and accuracy, electron beam welding has an important role in industrial applications such as semi-conductor and LCD manufactures. Since its operation has been done in a vacuum room, it is very difficult to check out their weldability as well as the correct welding area of the specimen. In this study, a measurement system of the electron beam welding has been developed based on the 3-axis LVDT controlled table. In addition, the algorithm to tracking the welding line has been developed. Welded regions were measured by using an A-scan ultrasonic sensor only. Weldability of the aluminum specimen has been tested by newly developed measuring system. The results are compared with those by using an C-scan ultrasonic sensor, which show good agreements with each other.

  • PDF

Development of Image Processing Software for UT-NDE of Steam Generator of Nuclear Power Plant (핵발전소 증기발생기의 초음파 비파괴 평가를 위한 영상처리 소프트웨어 개발)

  • Lee, Young-Seock;Nam, Myoung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.226-231
    • /
    • 2007
  • This paper describes a development of ultrasonic examination analysis software to analyze steam generator of nuclear power plant. The developed software includes classical analysis method such as A, B, C and D-scan images. This software provides the information of shape, depth, size and position of flaws. To do such, we obtain raw data from specimens and/or real pipeline of power plants and, modify the obtained ultrasonic 1-dimensional data according to prepared software design schedule. The developed analysis software is applied to specimens containing various flaws with known dimensions. The results of applications showed that the developed software provided accurate and enhanced images of flaws on various specimens.

  • PDF

Recent Development in Ultrasonic Guided Waves for Aircraft and Composite Materials

  • Rose, Joseph L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.525-533
    • /
    • 2009
  • Emphasis in the paper is placed on describing guided wave successes and challenges for applications in aircraft and composite materials inspection. Guided wave imaging methods discussed includes line of sight, tomography, guided wave C-scan, phased array, and ultrasonic vibration methods. Applications outlined encircles lap splice, bonded repair patch, fuselage corrosion, water loaded structures, delamination, and ice detection and de-icing of various structures.

Development of Ultrasonic Inspection System and Application to Overlay Weld Flaw Detection (초음파 자동 검사시스템의 개발과 오버레이 용접부의 결함검사)

  • Nam, Young-Hyun;Seong, Un-Hak
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.562-567
    • /
    • 2000
  • Many pressure vessels for power and industrial plant are fabricated from low alloy carbon steels. The inner sides of pressure vessels are commonly weld-cladded with austenitic stainless steels to minimize problems of corrosive attack. Disbonding cracks are often detected at the transition region of welding interlayer, which is serious problem to reliability of pressure vessels. We have developed C-scan system to high speed inspection of overlay weld using DSP(digital signal processor). This system consists of signal processing parts (oscilloscope, pulser/receiver, digitizer, DSP), scanner, program and position controller. The developed system has been applied to a practical ultrasonic testing in overlay weld, and demonstrated high speed with precision

  • PDF

Nondestructive Evaluation Technique of Painted Sandwich Control Surfaces of CN-235 using Full-field Pulse-echo Ultrasonic Propagation Imaging System (전영역 펄스-에코 초음파전파영상화 시스템의 CN-235의 도색된 샌드위치 조종면 In-situ 비파괴평가 기술)

  • Hong, Seung-Chan;Lee, Jung-Ryul;Park, Jongwoon
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.288-292
    • /
    • 2016
  • In this paper, a novel ultrasonic propagation imaging system, called a full-field pulse-echo ultrasonic propagation imaging (FF PE UPI) system is introduced. The system nondestructively inspected targets with two-axis translation stage. The coincident laser beams for ultrasonic sensing and generation are scanned and pulse-echo mode laser ultrasounds are captured. This procedure makes it possible to generate full-field ultrasound in through-the-thickness direction as large as the scan area. Structural inspection results in the form of full-field ultrasonic wave propagation videos are introduced, which are painted sandwich control surfaces. In addition, the inspection results of FF PE UPI system are compared with conventional ultrasonic testing methods such as waterjet and portable C-scan.

The Quality Evaluation on Resistance Spot Welding of 2024 Aluminum Alloy and Zinc Coated Steel (2024 Al합금과 아연도금강판의 점용접에 관한 품질평가)

  • 허인호;이철구;채병대
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.379-383
    • /
    • 2001
  • Resistance spot welding has been widely used in the sheet metal joining processes because of low cost, high productivity and convenience. Recently, automobile and aerospace industries are trying to replace partly steel sheets with aluminum alloy sheets. But in the case of dissimilar materials, to apply resistance spot welding has been known to be very difficult owing to the effect of melting temperature. On this study, an effort was made to apply spot welding of dissimilar sheet metals, 2024 aluminum alloy and zinc coated steel sheet, evaluate the spot weld quality with tensile-shear strength test and nondestructive evaluation technique, C-scan image methodology. In this study results, as the current below 11 kA, melting of materials is not achieved well. Also as the current exceeds to 13.5 kA, the more spatters happen at welded zone and tensile-shear strength lowered. So, the feasibility of C-scan image technique proposed in the study is found to be suitable evaluation method for resistance spot weldability.

  • PDF