• Title/Summary/Keyword: ultramafic rocks

Search Result 49, Processing Time 0.026 seconds

The Nature of Gold Mineralization in the Archean Sunrise Dam Gold Deposit in Western Australia (호주 Sunrise Dam 광상의 금 광화작용)

  • Sung, Yoo-Hyun;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.429-441
    • /
    • 2010
  • The Sunrise Dam gold deposit is located approximately 850 km ENE of Perth, in the eastern part of the Yilgam Craton, Western Australia. The mine has produced approximately 153 t of Au at an average grade of 4.2 g/t, which stands for the most significant gold discoveries during the last decade in Western Australia. The deposit occurs in the Laverton Tectonic Zone corresponding to the corridor of structural complexity in the Laverton greenstone belt, and characterized by tight folding and thrusting. The mine stratigraphy consists of a complexly deformed and altered volcaniclastic and volcanic rocks. These have been overlain by a turbidite sequence containing generally well-sorted siltstones, sandstones and magnetite-rich shales, which are consistently fining upwards. These sequences have been intruded by quartz diorite, ultramafic dikes, and rhyodacite porphyry (Archean), and lamprophyre dikes (Palaeoproterozoic). These rocks constitute the asymmetric NNE-trending Spartan anticline with north-plunging thrust duplication of the BIF unit. The deposit is located on the western limb of this structure. Transported, fluvial-lacustrine and aeolean sediments lie unconformably over the deposit showing significant variation in relief. Gold mineralization occurs intermittently along a NE-trending corridor of ca. 4.5 km length. The 20 currently defined orebodies are centered on a series of parallel, gently-dipping ($\sim30^{\circ}$) and NESW trending shear zones with a thrust-duplex architecture and high-strain characteristics. The paragenetic sequence of the Sunrise Dam deposit can be divided into five hydrothermal stages ($D_1$, $D_2$, $D_3$, $D_4a$, $D_4b$), which are supported by distinctive features of the mineralogical assemblages. Among them, the D4a stage is the dominant episode of Au deposition, followed by the $D_4b$ stage, which is characterized by more diverse ore mineralogy including base metal sulfides, sulfosalts, and telluride minerals. The $D_4a$ stage contains higher proportions of microscopic free gold (48%) than D4b stage (12%), and pyrite is the principal host for native gold (electrum) followed by tetrahedrite-group minerals in both stages.

Geochemical Occurrence Characteristics of Geogenic Heavy Metals in Korea Evaluated Using Geochemical Map Data (전국 지화학도 자료를 이용한 지질기원 중금속의 지화학적 발생특성)

  • Ahn, Joo Sung;Youm, Seung-Jun;Cho, Yong-Chan;Yim, Gil-Jae;Ji, Sang-Woo;Lee, Jung-Hwa;Lee, Pyeong-Koo;Lee, Jeong-Ho;Shin, Seong-Cheon
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • As environmental criteria items are increased or strengthened, cases of heavy metal contamination by geogenic origin are increasing, and the need to distinguish between natural and anthropogenic origins in soil or groundwater exceeding the standard is increasing. In this study, geochemical occurrences of geogenic heavy metals were identified through statistical processing of the national geochemical map data and evaluation of geochemical characteristics of regions with high geoaccumulation indices. Cobalt, Cr, Cu, Ni, Pb, V, and Zn were targeted for which the national geochemical maps were prepared, and Co, Cr, Ni, and V derived from ultrabasic or ultramafic rocks were classified as factor 1. Copper, Pb and Zn of non-ferrous sulfide origin were classified as factor 2. In particular, enrichment of heavy metals by factor 1 occurs mainly in the serpentine distribution areas of the Chungcheong region, and there is a risk of contamination in neighboring areas. In the case of factor 2, geogenic occurrence is concerned not only in non-ferrous metal mineralization areas such as Taebacksan and Gyeongnam mineralization zones, but also in Au-Ag mineralization areas distributed nationwide.

Petrochemistry of Garnet-bearing Metabasite in Marble at Shinri area in Hongseong and its Tectonic Implication (홍성 신리 지역 대리암 내 함석류석 변성염기성암의 암석지화학 연구 및 그 지구조적 의미)

  • Kim, Sung-Won;Koh, Hee-Jae
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.209-225
    • /
    • 2010
  • The Shinri area near the Yedang Lake, the eastern part of the Hongseong area in SW Gyeonggi Massif, consists of the Neoproterozoic Duckjeongri granodiorite-tonalite, mylonitized amphibole-bearing orthogneiss and impure marble with lens-shaped garnet-bearing metabasites. In this paper, we report mineralogical and geochemical data of Neoproterozoic lens-shaped garnet-bearing metabasites within marble of the Shinri area. The $SiO_2$ contents of garnet-bearing metabasites in marble vary between ~46.98 and 51.17 wt%, and the $Na_2O$ + $K_2O$ contents fall between ~1.95 and 2.85 wt%, similar to the tholeiitic sub-alkaline basaltic rocks. In the Zr/Y vs. Zr diagram, garnet-bearing metabasites also plot in the subalkaline basaltic rocks. The chondrite-normalized REE patterns for Shinri garnet-bearing metabasites show relatively flat patterns to that of chondrite. They show slight LREE-enriched and depleted patterns. The major and trace element data from lens-shaped garnet-bearing metabasites in marble of the Shinri area suggest that these rocks were formed in within plate. In contrast, previous major and trace element data of high pressure type garnet-bearing metabasites from the mafic-ultramafic complex in the Baekdong and Bibong areas suggest that these rocks were formed in a nascent arc to backarc spreading center within subduction zone setting. Based on mineral assemblage and mineral chemistry, P-T estimates for Shinri garnet-bearing metabasites are 9.6-12.7 kb, $695-840^{\circ}C$ for inclusions in the core, and 9.6-13.6 kb, $630-755^{\circ}C$ for those in the rim. These P-T estimates are distinct from those of the Baekdong and Bibong garnet-bearing metabasites with isothermal decompressional retrograde P-T path. In addition to Triassic tectonic activity previously reported in the Shinri area of Hongseong, the details of metamorphic history such as protolith age and Neo-Proterozoic metamorphic episode need to be solved.

W-Sn-Bi-Mo Mineralization of Shizhuyuan deposit, Hunan Province, China (중국 호남성 시죽원 광상의 W-Sn-Bi-Mo광화작용)

  • 윤경무;김상중;이현구;이찬희
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.179-189
    • /
    • 2002
  • The Geology of the Shizhuyuan W-Sn-Bi-Mo deposits, situated 16 Ian southeast of Chengzhou City, Hunan Province, China, consist of Proterozoic metasedimentary rocks, Devonian carbonate rocks, Jurassic granitic rocks, Cretaceous granite porphyry and ultramafic dykes. The Shizhuyuan polymetallic deposits were associated with medium- to coarse-grained biotite granite of stage I. According to occurrences of ore body, ore minerals and assemblages, they might be classified into three stages such as skarn, greisen and hydrothernlal stages. The skarn is mainly calcic skarn, which develops around the Qianlishan granite, and consists of garnet, pyroxene, vesuvianite, wollastonite, amphibolite, fluorite, epidote, calcite, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unidetified Bi- Te-S system mineral, magnetite, and hematite. The greisen was related to residual fluid of medium- to coarse-grained biotite granite, and is classified into planar and vein types. It is composed of quartz, feldspar, muscovite, chlorite, tourmaline, topaz, apatite, beryl, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unknown uranium mineral, unknown REE mineral, pyrite, magnetite, and chalcopyrite with minor hematite. The hydrothermal stage was related to Cretaceous porphyry, and consist of quartz, pyrite and chalcopyrite. Scheelite shows a zonal texture, and higher MoO) content as 9.17% in central part. Wolframite is WO); 71.20 to 77.37 wt.%, FeO; 9.37 to 18.40 wt.%, MnO; 8.17 to 15.31 wt.% and CaO; 0.01 to 4.82 wt.%. FeO contents of cassiterite are 0.49 to 4.75 wt.%, and show higher contents (4.]7 to 4.75 wt.%) in skarn stage (Stage I). Te and Se contents of native bismuth range from 0.00 to 1.06 wt.% and from 0.00 to 0.57 wt.%, respectively. Unidentified Bi-Te-S system mineral is Bi; 78.62 to 80.75 wt.%, Te; 12.26 to 14.76 wt.%, Cu; 0.00 to 0.42 wt.%, S; 5.68 to 6.84 wt.%, Se; 0.44 to 0.78 wt.%.

Metamorphic Evolution of Metabasites and Country Gneiss in Baekdong Area and Its Tectonic Implication (백동지역의 변성염기성암과 주변 편마암의 변성진화과정과 그 지구조적 의미)

  • 오창환;최선규;송석환
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.103-120
    • /
    • 2002
  • In the Baekdong-Hongseong area, the southwestern part of the Gyeonggi Massif in Korea, ultramafic rocks occur as lenses within Precambrian granitic gneiss. At Baekdong area, ultramafic lens contains metabasite boudin which had undergone at least three stages of metamorphisms. The mineral assemblage on the first stage, Garnet+Sodic Augite+Hornblende+Plagioclase+Titanite, is recognized from the inclusions in garnet. The second stage is represented by the assemblage in matrix, Garnet+ Augite+Hornblende+Plagioclase, while the third stage is identified by the Hornblende+Plagjoclase $\pm$ Garnet assemblage in the symplectite formed around garnet. The P-T conditions of the first and the third stages are $690-780^{\circ}C$, 11.8-15.9 kb and $490-610^{\circ}C$, 4.0-6.3 kb, respectively. These data indicate that metabasite in Baekdong area had experienced a retrouade P-T path from the eclogite(EG) - high-pressure granulite (HG)-amphibolite (AM) transitional facies to the AM through HG-AM transitional facies. The core and rim of garnet in country granitic gneiss give $605-815^{\circ}C$, 10.7-16.0 kb and $575-680^{\circ}C$, 5.4-7.0 kb, respectively, indicating that the retrograde P-T path of granitic gneiss is similar to that of metabasite. Trace element data reveals that the tectonic setting of metabasite is island uc. The general geology, the metamorphic evolution, the mineral chemistry and the tectonic setting of Baekdong area indicate that the Baekdong-Hongseong area in Korea is a possible extension of the Sulu collision Belt in China. On the other hand, the Sm-Nd whole rock-garnet isochron ages of metabasites are 268.7-297.9 Ma which are older than the ages of UHP metamorphism (208-245 Ma) in the Dabie-Sulu Collision Belt. The older metamorphic ages suggest that collision between Sino-Korea and Yangtz plates may have occurred earlier in Korean Peninsula than China.

Textural and Genetic Implications of Type II Xenoliths Enclosed in Basaltic Rocks from Jeju Island (제주도 현무암에 포획된 Type II 포획암: 성인과 조직적 특성)

  • Yu, Jae-Eun;Yang, Kyoung-Hee;Hwang, Byoung-Hoon;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.223-236
    • /
    • 2009
  • Ultramafic xenoliths from southeastern part of Jeju Island can be grouped into two types: Type I and Type II. Type I xenoliths are magnesian and olivine-rich peridotite (mg#=89-91), which are commonly found at the outcrop. Most previous works have been focused on Type I xenoliths. Type II xenoliths, consisting of olivine, orthopyroxene and clinopyroxene with higher Fe and Ti components (mg#=77-83) and lower Mg, Ni, Cr, are reported in this study. They are less common with a more extensive compositional range. The studied Type II xenoliths are wehrlite, olivine-clinopyroxenite, olivine websterite, and websterite. They sometimes show ophitic textures in outcrops indicating cumulate natures. The textural characteristics, such as kink banding and more straight grain boundaries with triple junctions, are interpreted as the result of recrystallization and annealing. Large pyroxene grains have exsolution textures and show almost the same major compositions as small exsolution-free pyroxenes. Although the exsolution texture indicates a previous high-temperature history, all mineral phases are completely reequilibrated to some lower temperature. Orthopyroxenes replacing clinopyroxene margin or olivine indicate an orthopyroxene enrichment event. Mineral phases of Type II are compared with Type I xenoliths, gabbroic xenoliths, and the host basalts. Those from Type II xenoliths show a distinct discontinuity with those from Type I mantle xenoliths, whereas they show a continuous or overlapping relation with those from gabbroic xenoliths and the host basalts. Our petrographic and geochemical results suggest that the studied type II xenoliths appear to be cumulates derived from the host magma-related system, being formed by early fractional crystallization, although these xenoliths may not be directly linked to the host basalt.

Situation of Utilization and Geological Occurrences of Critical Minerals(Graphite, REE, Ni, Li, and V) Used for a High-tech Industry (첨단산업용 핵심광물(흑연, REE, Ni, Li, V)의 지질학적 부존특성 및 활용현황)

  • Sang-Mo Koh;Bum Han Lee;Chul-Ho Heo;Otgon-Erdene Davaasuren
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.781-797
    • /
    • 2023
  • Recently, there has been a rapid response from mineral-demanding countries for securing critical minerals in a high tech industries. Graphite, while overwhelmingly dominated by China in production, is changing in global supply due to the exponential growth in EV battery sector, with active exploration in East Africa. Rare earth elements are essential raw materials widely used in advanced industries. Globally, there are ongoing developments in the production of REEs from three main deposit types: carbonatite, laterite, and ion-adsorption clay types. While China's production has decreased somewhat, it still maintains overwhelming dominance in this sector. Recent changes over the past few years include the rapid emergence of Myanmar and increased production in Vietnam. Nickel has been used in various chemical and metal industries for a long time, but recently, its significance in the market has been increasing, particularly in the battery sector. Worldwide, nickel deposits can be broadly classified into two types: laterite-type, which are derived from ultramafic rocks, and ultramafic hosted sulfide-type. It is predicted that the development of sulfide-type, primarily in Australia, will continue to grow, while the development of laterite-type is expected to be promoted in Indonesia. This is largely driven by the growing demand for nickel in response to the demand for lithium-ion batteries. The global lithium ores are produced in three main types: brine lake (78%), rock/mineral (19%), and clay types (3%). Rock/mineral type has a slightly higher grade compared to brine lake type, but they are less abundant. Chile, Argentina, and the United States primarily produce lithium from brine lake deposits, while Australia and China extract lithium from both brine lake and rock/mineral sources. Canada, on the other hand, exclusively produces lithium from rock/mineral type. Vanadium has traditionally been used in steel alloys, accounting for approximately 90% of its usage. However, there is a growing trend in the use for vanadium redox flow batteries, particularly for large-scale energy storage applications. The global sources of vanadium can be broadly categorized into two main types: vanadium contained in iron ore (81%) produced from mines and vanadium recovered from by-products (secondary sources, 18%). The primary source, accounting for 81%, is vanadium-iron ores, with 70% derived from vanadium slag in the steel making process and 30% from ore mined in primary sources. Intermediate vanadium oxides are manufactured from these sources. Vanadium deposits are classified into four types: vanadiferous titanomagnetite (VTM), sandstone-hosted, shale-hosted, and vanadate types. Currently, only the VTM-type ore is being produced.

Hydrous Minerals (Phlogopite and Amphibole) from Basaltic Rocks, Jeju Island: Evidences for Modal Metasomatism (제주도 현무암에 산출되는 함수광물(금운모와 각섬석): 모달교대작용의 증거)

  • Heo, Seo-Young;Yang, Kyoung-Hee;Jeong, Hoon-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.13-30
    • /
    • 2012
  • Phlogopite and kaersutite, showing distinctively different textural characteristics compared to the common phenocrysts, are observed in alkali basalt from Jeju Island. They occur as large crystals (2-10 mm) in host basalts, whereas fine-grained phlogopite and kaersutite occur in ultramafic mantle xenoliths and mafic gabbroic xenoliths, respectively, as an interstitial and microvein phases, or in corona textures (<1 mm). This textural characteristics of fine-grained grains clearly indicates secondary in origin. Phlogopite contains high $TiO_2$(4.1-6.9 wt%) and F(2.8-4.6 wt%) and relatively high mg#[=100Mg/(Mg+$Fe^t$) in mols, where $Fe^t$ is total iron](88-80), whereas kaersutite has high $TiO_2$(5.6-6.11 wt%) and much lower mg#s(68-64). Our textural observations and the geochemical character of these hydrous minerals suggest that they were unrelated to each other and mica formation happened early in the upper mantle before the mantle xenoliths had been trapped. In contrast, kaersutite formation has happened later, probably during the late stage of crystallization as intracrustal processes. The presence of phlogopite and kaersutitic amphibole is a direct evidence for K-, Ti-, F- and $H_2O$-bearing fluid/melt percolation in the lithosphere beneath Jeju Island, indicating that they are product of interaction between host rock/peridotite/fluid-melt. Thus, the upper mantle/lower crust beneath Jeju Island are metasomatized to various extents, characterized by a change in major metasomatic hydrous minerals from phlogopite to amphibole with decreasing depth.

Interpretation of the Manufacturing Characteristics and the Mineral and Chemical Composition of Neolithic Pottery Excavated from the Jungsandong Site, Yeongjong Island, South Korea (영종도 중산동 신석기시대 토기의 광물 및 화학조성과 제작특성 해석)

  • Lee, Chan Hee;Kim, Ran Hee;Shin, Sook Chung
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.1
    • /
    • pp.4-31
    • /
    • 2018
  • The Neolithic pottery excavated from the Jungsandong site has been classified into four types of pottery (I: feldspar type, II: mica type, III: talc type and IV: asbestos type) according to their mineral composition. These four types of potteries generally appear to have undergone incomplete firing, while the level of oxidation in the type I pottery objects, which have a relatively higher clay content, was found to be particularly low. The type III objects, which have a high talc content, are judged to have been somewhat slow in removing carbon because they contain saponite belonging to the smectite group. Of the four types of pottery, type IV showed the highest redness and the most uniform characteristics, thus indicating a good level of oxidation. In particular, fixed carbide (C; 33.7 wt.%) with a thickness of about 1mm, and originating from organic substances, was detected inside the walls of the type I pottery, while the deep radial cracks in the outer surfaces of the pottery are thought to have been caused by repeated thermal shocks. Given that all of the pottery except for the type I artifacts are considered to be have been made for storage purposes, those containing talc and tremolite are easy to done liquid storing vessels based on an analysis of their material characteristics. As for the type II relics, which are composed of various minerals and exhibit poor physical properties, they seem to have been used for simple storage purposes. As domestic talc and asbestos mines were concentrated in the areas of Gyeonggi, Gangwon, Chungbuk, and Chungnam, it seems likely that talc and tremolite were produced as contiguous minerals. Considering the distance between the remains in Jungsandong and these mines and their geographical distribution, there is a possibility - albeit somewhat slight - that these mines were developed for the mining of various minerals. Although ultramafic rock masses - such as serpentine capable of generating talc and tremolite - have not been found in the Jungsandong area, limestone and biotite granite containing mica schist have been identified in the northwestern part of Yeongjong Island, indicating that small rock masses might have formed there in the past. Therefore, it is judged necessary to accumulate data on pottery containing talc and tremolite, other than the remains in Jungsandong, and to investigate the rocks and soils in the surrounding area with greater precision. The firing temperatures of the pottery found at the Jungsandong site were interpreted by analyzing the stability ranges of the mineral composition of each type. As a result, they have been estimated to range from 550 to $800^{\circ}C$ for the type I artifacts, and from 550 to $700^{\circ}C$ for the type I, II and IV artifacts. However, these temperatures are not the only factors to have affected their physical properties and firing temperature, and the types, particle sizes, and firing time of the clay should all be taken into consideration.