• 제목/요약/키워드: ultrafine powder

Search Result 137, Processing Time 0.215 seconds

Synthesis of Ultrafine TiC-5%Co Powder by Using Co Nitrate and TiO(OH)2 Slurry and Evaluation of Sintered Materials Prepared by Mixing WC-Co (Co 질산염과 TiO(OH)2 슬러리를 이용한 초미립 TiC-5%Co 제조 및 WC-Co 분말과의 혼합에 따른 소결체 특성)

  • Hong, Seong-Hyeon;Kim, Byoung-Kee
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.107-113
    • /
    • 2008
  • Ultrafine TiC-5%Co powders were synthesized by spray drying of aqueous solution of TiO$(OH)_2$ slurry and cobalt nitrate, followed by calcination and carbothermal reaction. The oxide powders with carbon powder was reduced and carburized at $900^{\circ}C{\sim}1250^{\circ}C$ under hydrogen atmosphere. During reduction, CO gas was mainly evolved by reducing reaction of oxides. Ultrafine TiC-5%Co powders were easily formed by carbothermal reaction at $1250^{\circ}C$ due to using ultrafine powders as raw materials. The ultrafine WC-TiC-Co alloy prepared by sintering of mixed powder of ultrafine WC-13%Co powder and ultrafine TiC-5%Co powder has higher sintered density and mechanical properties than WC-TiC-Co alloy prepared by commercial WC, TiC and Co powders.

Synthesis of Ultrafine TiC-15%Co Powder by Thermochemical Method (열화학적 방법에 의한 초미립 TiC-15%Co 분말의 합성)

  • 홍성현;탁영우;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.281-287
    • /
    • 2003
  • Ultrafine TiC-15%Co powders were synthesized by a thermochemical process, including spray drying, calcination, and carbothermal reaction. Ti-Co oxide powders were prepared by spray drying of aqueous solution of titanium chloride and $Ti(OH)_2$ slurry, both containing cobalt nitrate, fellowed by calcination. The oxide powders were mixed with carbon powder to reduce and carburize at 1100~125$0^{\circ}C$ under argon or hydrogen atmosphere. Ultrafine TiC particles were formed by carbothermal reaction at 1200~125$0^{\circ}C$, which is significantly lower than the formation temperature (~1$700^{\circ}C$) of TiC particles prepared by conventional method. The oxygen content of TiC-15%Co powder synthesized under hydrogen atmosphere was lower than that synthesized under argon, suggesting that hydrogen accelerates the reduction rate of Ti-Co oxides. The size of TiC-15%Co powder was evaluated by FE-SEM and TEM and Identified to be smaller than 300 nm.

Densification of Ultrafine $Si_3-N_4-SiC$ Powder Compacts by Rapid Heating under Controlled Thermograms (급속가열 이력 제어에 의한 $Si_3-N_4-SiC$계 미분말 시편의 치밀화)

  • 이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.832-838
    • /
    • 1995
  • The densifying behavior of ultrafine amorphous Si3N4 (about 20 nm)-$\beta$-SiC (about 40~80 nm) powders (O2 : 1.3~15wt%, 0$700^{\circ}C$ within 15 sec and then immediately cooled and held at 135$0^{\circ}C$ for 10 min in N2 atmosphere without resorting to additives using a Xe image heating apparatus. Using an ultrafine pure Si3N4 powder with particle size less than 30nm, further more, mixed with an appropriate amount of $\beta$-SiC, was found to be advantageous to obtain uniform and homogeneous microstructure. In addition, ultrafine Si3N4 powders were also proved to be effective as sintering additive on densifying large sized Si3N4 powder compacts.

  • PDF

Development of Ultrafine Angelica Powder-Added Syrup (초미세 당귀분말 첨가 시럽의 제조 기술 개발)

  • Sim, Jae-Sung;Choi, Kyeong-Ok;Kim, Dong-Eun;Sun, Ju-Ho;Kang, Wie-Soo;Lim, Jung-Dae;Ko, Sanghoon
    • Food Engineering Progress
    • /
    • v.13 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Angelicae gigantis Radix (dried root of Angelica gigas) including major bioactives such as decursin and decursinol angelate provides rich flavors and several healthy benefits. Recent studies have shown that ultrafine powders of herbal medicines provide better physical properties and biological activities. Thus, ultrafine Angelica powder was added into the oligosaccharide syrup to provide flavors and healthy benefits in this study. Angelicae gigantis Radix was pulverized into d(0.1) = 3.220, d(0.5) = 7.822, and d(0.9) = 7.817 $\mu$m respectively using an air-flow mill. The ultrafine Angelica powder was added into the oligosaccharide syrup process with different ratios of water to oligosaccharide syrup at 1:5, 1:8, 1:11, and 1:14. The physicochemical properties such as viscosity and bulk density were measured. The Stokes' law was applied to predict the sedimentation velocity of the added Angelica powder in the syrup. The Angelica syrup prepared in this experiment showed good stability since the Angelica particles precipitated down slowly. The ratio of water to oligosaccharide syrup at 1:11 showed the optimal preparation in terms of the stability and the viscosity. The ultrafine-sized herbal powders such as Angelicae gigantis Radix have potentials for various food and pharmaceutical applications.

Preparation of Ultrafine Mullite Powder from Metal Alkoxides (금속 알콕사이드로부터 Mullite 초미분체의 제조)

  • Yim, Going;Yim, Chai-Suk;Kim, Young-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.719-724
    • /
    • 2006
  • Ultrafine mullite powder was prepared from aluminium-secbutoxide and tetraethyl orthosilicate(TEOS) in the molar $Al_2O_3/SiO_2$=3/2. Sol-gel method by partial hydrolysis technique, as it were, first, TEOS was partially hydrolysized and then mixed with Al-secbutoxide for complete hydrolysis was used. X-ray diffraction, infrared spectroscopy and transmission electron microscopy, etc. confirmed that the mullite powder prepared by this method is in the stoichiometric $Al_2O_3/SiO_2$ ratio. Al-Si spinel was formed at $980^{\circ}C$ and ultrafine mullite powder with about 20 nm particle size was obtained above $1,200^{\circ}C$. Also mullite powders calcined at $1,600^{\circ}C$ had a stoichiometric composition, $3Al_2O_3{\cdot}2SiO_2$ and the lattice constants of the mullite powders calcined above $1,200^{\circ}C$ were almost coincided with theoretical values.

Physicochemical Characteristic of Ultrafine Sparassis crispa(cauliflower mushroom) Powder

  • Sun-Sun Hur
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.945-954
    • /
    • 2023
  • In this study, Sparassis crispa(cauliflower mushroom), which is rich in beta-glucan, was pulverized using ultrafine grinding technology for its potential utilization as a diverse food ingredient. The physical and antioxidant properties of cauliflower mushroom powder were evaluated at various grinding times. The results showed that as the grinding time of cauliflower mushroom increased, the average particle size significantly decreased (p<0.05). Additionally, the water-holding capacity, swelling capacity, and water solubility index of cauliflower mushroom increased significantly(p<0.05). Based on the analysis mentioned above, cauliflower mushroom prepared as a superfine powder for 5 minutes exhibited superior physical and chemical properties as well as antioxidant characteristics and is expected to be widely used in various foods.

Nanocrystalline and Ultrafine Grained Materials by Mechanical Alloying

  • Wang, Erde;Hu, Lianxi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.829-830
    • /
    • 2006
  • Recent research at Harbin Institute of Technology on the synthesis of nanocrystalline and untrafine grained materials by mechanical alloying/milling is reviewed. Examples of the materials include aluminum alloy, copper alloy, magnesium-based hydrogen storage material, and $Nd_2Fe_{14}B/{\alpha}-Fe$ magnetic nanocomposite. Details of the processes of mechanical alloying and consolidation of the mechanically alloyed nanocrystalline powder materials are presented. The microstructure characteristics and properties of the synthesized materials are addressed.

  • PDF

Preparation of Ultrafine Mn-Zn Ferrite by Direct-Wet Synthesis and a Study of Magnetic Properties (습식직접 합성에 의한 초미분 Mn-Zn Ferrite의 합성과 자성특성에 관한 연구)

  • 이경희;이병하;허원도;황우연
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.757-766
    • /
    • 1991
  • These powder properties were investigated and prepared of ultrafine Mn-Zn ferrite powder by Direct-wet process from variation of oxidation condition. H2O2 oxidation the products were ultrafine spherical particles of about 400${\AA}$ in diameter and superparamagnetics. H2O2 and Air oxidation, Coexistance ultrafine spherical particles of about 400${\AA}$ and cubic particles of about 1000${\AA}$. The products were constructed of superparamagnetic and ferromagnetic particles, and Magnetization were about 30 emu/g. Air Oxidation, Above 6 hr Air 120 ι/hr and 4 hr of Air 180 ι/hr were uniform cubic particles of above 1000${\AA}$. The products were ferromagnetic particles and Magnetization of above 45 emu/g.

  • PDF

Synthesis of Ultrafine TaC-5%Co Composite Powders using Tantalum Oxalate Solution (수산 탄탈륨 용액을 이용한 초미립 TaC-5%Co 복합 분말의 합성)

  • 권대환;홍성현;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.255-261
    • /
    • 2003
  • Ultrafine TaC-5%Co composite powders were synthesized by spray conversion process using tantalum oxalate solution and cobalt nitrate hexahydrate(Co($(NO_3)_2$ . 6$H_2O$). The phase of Ta-Co oxide powders had amorphous structures after calcination below 50$0^{\circ}C$ and changed $Ta_2O_5$, $TaO_2$ and $CoTa_2O_6$ phase by heating above $600^{\circ}C$. The calcined Ta-Co oxide powders were spherical agglomerates consisted of ultrafine primary particles <50 nm in size. By carbothermal reaction, the TaC phase began to form from 90$0^{\circ}C$. The complete formation of TaC could be achieved at 105$0^{\circ}C$ for 6 hours. The observed size of TaC-Co composite powders by TEM was smaller than 200 nm.