• Title/Summary/Keyword: ultra-high performance concrete (UHPC)

Search Result 197, Processing Time 0.019 seconds

Analysis of circular steel tube confined UHPC stub columns

  • Hoang, An Le;Fehling, Ekkehard
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.669-682
    • /
    • 2017
  • The use of ultra high performance concrete (UHPC) in composite columns offers numerous structural benefits, and has received recent research attention. However, the information regarding the behavior of steel tube confined concrete (STCC) columns employing UHPC has been extremely limited. Thus, this paper presents an overview of previous experimental studies on circular STCC columns with taking into account various concrete strengths to point out their distinctive features. The effect of the confinement factor and the diameter to thickness ratio on both strength and ductility in circular STCC columns employing UHPC was investigated. The applicability of current design codes such as EC4, AISC, AIJ and some available analytical models for concrete confined by steel tube was also validated by the comparison of ultimate loads between the prediction and the test results of Schneider (2006) and Xiong (2012). To predict the stress-strain curves for confined UHPC in circular STCC stub columns, a simplified model was proposed and verified by the comparison with experimental stress-strain curves.

Evaluation of Flexural Strength and Ductility of Hybrid Fiber Reinforced UHSC Flexural Members (하이브리드 강섬유 보강 초고강도 콘크리트 휨파괴형 부재의 강도 및 연성 평가에 관한 연구)

  • Yuh, Ok-Kyung;Bae, Baek-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.61-69
    • /
    • 2019
  • In this study, the flexural strength and curvature ductility factor of single and hybrid fiber reinforced ultra high strength concrete flexural members with conventional steel rebar were evaluated by experimental program with 3-UHSC beams. Test specimens were loaded by 4-pointed flexural loading. According to the test results, hybrid fiber reinforced UHPC test specimens had higher moment resisting capacity and ductility. For the safe design of hybrid fiber reinforced UHPC, test specimens were analyzed according to the sectional analysis method with material models suggested by K-UHPC design recommendation. Current K-UHPC design recommendation predict the moment resisting capacity of member conventionally and over-estimated the ductility.

Evaluation of the Mechanical Properties of Light Transmitting Concrete using TiO2 Photocatalyst (이산화티탄 광촉매 적용 광투과 콘크리트 역학특성 평가)

  • Seo, Seung-Hoon;Kwon, Shi-Won;Oh, Sang-Keun;Kim, Byoung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.63-64
    • /
    • 2019
  • Due to the rapid deterioration of the domestic atmosphere, people are suffering from inconveniences such as wearing fine dust masks all the time during outdoor activities. In this study, light transmitting concrete, LEFC(Light Emotion Friendly Concrete), using TiO2 photocatalyst was produced. Since the characteristics of LEFC where acrylic rods are inserted require self-consolidating performance, the purpose was to utilize UHPC(Ultra High Performance Concrete) materials to obtain high-flowability. Further, the compressive strength and flexural strength were evaluated to prevent the reduction of epidemiological performance by utilizing UHPC materials. As such, a basic study was carried out to develop LEFC materials using photocatalyst that can purify the air and stimulate human sensibility.

  • PDF

Numerical and theoretical modelling of low velocity impact on UHPC panels

  • Prem, Prabhat R.;Verma, Mohit;Ramachandra Murthy, A.;Rajasankar, J.;Bharatkumar, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.207-215
    • /
    • 2017
  • The paper presents the studies carried out on low velocity impact of Ultra high performance concrete (UHPC) panels of size $350{\times}350{\times}10mm^3$ and $350{\times}350{\times}15mm^3$. The panels are cast with 2 and 2.5% micro steel fibre and compared with UHPC without fiber. The panels are subjected to low velocity impact, by a drop-weight hemispherical impactor, at three different energy levels of 10, 15 and 20 J. The impact force obtained from the experiments are compared with numerically obtained results using finite element method, theoretically by energy balance approach and empirically by nonlinear multi-genetic programming. The predictions by these models are found to be in good coherence with the experimental results.

A Study on the Mixing of Ultra High Performance Concrete with Red Mud containing Titan dioxide (이산화티탄이 함유된 레드머드를 혼입한 초고성능콘크리트의 배합에 관한 연구)

  • Seo, Seung-Hoon;Kwon, Shi-Won;Oh, Sang-Keun;Kim, Byoung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.70-71
    • /
    • 2019
  • Interest in indoor air quality is increasing day by day due to various reasons such as industrial development. Because redmud, an industrial subsidiary, contains titanium dioxide, this study evaluated self-consolidation performance with Slump Flow Test, J-Ring Test, and L-Box Test by mixing redmud in a mixture of ultra-high performance concrete, and sought the optimal combination with high flowability. In addition, the UHPC mixing experiment with photocatalyst was conducted, and the photocatalyst was replaced by the weight ratio of cement and the redmud by the weight ratio of fine aggregate and mixed with the concrete mixture.

  • PDF

Autogeneous Shrinkage Characteristics of Ultra High Performance Concrete (초고성능 콘크리트의 자기수축 특성)

  • Kim, Sung-Wook;Choi, Sung;Lee, Kwang-Myong;Park, Jung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.295-301
    • /
    • 2011
  • Recently, the use of UHPC made of superplasticizers, silica fume, and steel fibers has been increasing worldwide. Although UHPC has a very high strength as well as an excellent durability performance due to its dense microstructures, earlyage cracks may occur due to the high heat of hydration and autogenous shrinkage caused by low W/B and high unit cement content. The early-age shrinkage cracking of UHPC can be controlled by using the shrinkage reducers and expansive admixtures having autogenous shrinkage compensation effect. In this paper, ultrasonic pulse velocity of UHPC containing shrinkage reducers and expansive agents was measured to predict its stiffness change. Also, the effect of shrinkage reducers and expansive agents on the autogenous shinkage of UHPC was investigated through the shrinkage test of UHPC specimens. Furthermore, the material coefficients of autogenous shrinkage prediction model were determined using the autogenous shrinkage values of UHPC with age. Consequently, the test results showed that, by adding shrinkage reducers and expansive agents, the stiffness of UHPC was rapidly developed at early-ages and the autogenous shrinkage was considerably reduced.

Assessment of stress-strain model for UHPC confined by steel tube stub columns

  • Hoang, An Le;Fehling, Ekkehard
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.371-384
    • /
    • 2017
  • Ultra high performance concrete (UHPC) has recently been applied as an alternative to conventional concrete in construction due to its extremely high compressive and tensile strength, and enhanced durability. However, up to date, there has been insufficient information regarding the confinement behavior of UHPC columns. Therefore, this study aims to perform an assessment of axial stress-strain model for UHPC confined by circular steel tube stub columns. The equations for calculating the confined peak stress and its corresponding strain of confined concrete in existing models suggested by Johansson (2002), Sakino et al. (2004), Han et al. (2005), Hatzigeorgiou (2008) were modified based on the regression analysis of test results in Schneider (2006) in order to increase the prediction accuracy for the case of confined UHPC. Furthermore, a new axial stress-strain model for confined UHPC was developed. To examine the suitability of the modified models and the proposed model for confined UHPC, axial stress-strain curves derived from the proposed models were compared with those obtained from previous test results. After validating the proposed model, an extensive parametric study was undertaken to investigate the effects of diameter-to-thickness ratio, steel yield strength and concrete compressive strength on the complete axial stress-strain curves, the strength and strain enhancement of UHPC confined by circular steel tube stub columns.

An Experimental Study on Bonding Performance Evaluation of UHPC in Accordance with Delay Time of Cold Joints (콜드조인트 지연시간에 따른 초고성능 콘크리트의 부착성능평가에 관한 실험적 연구)

  • Jang, Hyun-O;Kim, Bo-Seok;Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.22-23
    • /
    • 2016
  • This study aims to derive the optimal condition that ensures the monolithicity of ultra-high performance concrete (UHPC), through the evaluation of bonding shear performance with respect to the time of cold joint occurrence during the placement. From the direct shear test, while the normalized bonding shear strength reduction of UHPC with the delay time of 15 minutes was the lowest at around 8%, a dramatic degradation of bonding shear performance was observed after 15 minutes. XRD analysis of the middle and surface sections was performed in order to analyze the composition of the thin film formed at the surface of UHPC, and as a result, the main ingredient appeared to be SiO2 from the XRD pattern of middle and surface sections, which is believed to be the result of the rising of SiO2-based filler, used as anadmixture in this study, toward the surface, due to its low specific gravity.

  • PDF

Effect of Silica Fume Types on the Mechanical Properties of Ultra-High Performance Concrete (실리카퓸 종류가 초고성능 콘크리트의 공학적 특성에 미치는 영향)

  • Park, Chun-Jin;Koh, Kyung-Teak;Ahn, Gi-Hong;Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.220-227
    • /
    • 2015
  • Ultra high performance concrete (UHPC) uses large quantities of steel fiber, silica fume, filler and superplasticizer for a low water-to-binder ratio (W/B). Despite of exceptional mechanical performances, UHPC exhibits increased viscosity due to the adoption of silica fume and its fabrication cost is costlier than ordinary concrete because of the use of large quantities of expensive materials. Following, this study evaluates the mechanical properties of 180MPa-UHPC using zirconium silica fume (Zr) instead of silica fume with respect to the quantity and type of superplasticizer (SP) and the size of filler. The results reveal that the Zr-UHPC using W/B of 20%, 100% of Zr, amount of SP-L of 2 to 3% and $4{\mu}m$-filler with steel fiber in 1.5 vol.% can develop better fluidity than the traditional mix composition using silica fume and secure a compressive strength higher than 180 MPa. In addition, the proposed mix composition is shown to enable a reduction of the fabrication cost by 33% compared to traditional UHPC.

Properties of Ultra High Performance Fiber Reinforced Cementitious Composites Mixed with Limestone Powder (석회석 미분말을 혼입한 초고성능 섬유보강 시멘트복합재의 특성)

  • Han, Sang-Mook;Wu, Xiang-Guo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.23-30
    • /
    • 2008
  • UHPC has high performance, high strength and excellent mechanical properties. Moreover UHPC(Ultra High Performance Cementitious Composite) has advantage to reduce cross section under the same load compared with other kinds of concrete. But silica fume which is imported from foreign country has a abundant portion in UHPC mixture in comparison with normal concrete. This is one of the main reason to raise the construction cost. Superior mechanical properties of UHPC due to the optimum filling composition can be changed by replacing the very fine ingredient. The purpose of this research is to grasp the characteristic of UHPC which silica fume and silica flour is replaced with limestone powder. This experiment can be divided into three classes according to the kinds of replacement. The compressive strength and flow of all types were measured and microstructure and hydration phenomena for comparing RPC were analyzed by SEM, XRD, NMR method. As a result, the replacement can be considered to be effective by for the decrease of the UHPC structure construction cost and improvement of the fresh UHPC.