• Title/Summary/Keyword: ultra high-performance concrete

Search Result 357, Processing Time 0.03 seconds

Analysis of hydration of ultra high performance concrete (초고성능 콘크리트의 수화모델에 대한 연구)

  • Wang, Hai-Long;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.13-14
    • /
    • 2014
  • Ultra high performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder-ratios are 0.15-0.20 with 20-30% of silica fume. The development off properties of hardening UHPC relates with both hydration of cement and pozzolanic reaction of silicafume. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of UHPC. The degree of hydration of cement and degree of reaction of silica fume are obtained as accompanied results from the proposed hydration model. The properties of hardening UHPC, such as degree of hydration of cement, calcium hydroxide contents, and compressive strength, are predicted from the contribution of cement hydration and pozzolanic reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and silica fume substitution ratios.

  • PDF

Design and Construction of Sunyudo Pedestrian Bridge Using Ultra-High Performance Concrete, Ductal (초고강도 콘크리트 Ductal을 이용한 선유도연결 보행전용교량의 설계와 시공)

  • 변윤주;허석범;정의환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.607-614
    • /
    • 2001
  • This paper describes the design and construction of main Arch bridge using Ultra-high performance concrete, Ductal in the Sunyudo pedestrian bridge project. Ductal is a new family of cementing materials with remarkable properties. Its mechanical characteristics reach unique values, with compressive strength in industrial use of 180 to 230 MPa and bending tensile strength of 50 to 80 MPa. By the use of Ductal, main Arch bridge crossing the Han-river is designed to the span 120m-long with optimized $\pi$ shape section.

  • PDF

A review on performance of composite structures combining UHPC and normal concrete

  • Thanh Vy Nguyen;TuanAnh Nguyen;An Hoang Le
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.149-161
    • /
    • 2024
  • In the world, the construction science and technology industry has developed strongly thanks to the application of Ultra-High Performance Concrete (UHPC) technology, with a strength greater than 150 Mpa and unprecedented durability. compared to previous materials. However, this technology can build special structures but has limited use in construction because it is not commercially feasible to replace regular concrete in most structural types due to material costs. high, lack of availability, limited design standards, complex manufacturing and maintenance techniques. This article examines the composition of UHPC materials and their performance in composite structures with conventional concrete, a promising choice for promoting the development of UHPC technology in construction. It is based on the combined use of UHPC as a covering layer around normal concrete or as an inner core to increase the strength of normal concrete, create a slender structure and reduce the cost and repair of construction works. Construction and transport infrastructure are degraded. Manufacturing costs are expected to be reduced with composite construction due to the advantages of combined materials.

Analysis Study on The Strength Range of Ultra High Strength Concrete (초고강도 콘크리트의 강도편차 분석연구)

  • Park, Hee-Gon;Lee, Jin-Woo;Bae, Yeoun-Ki;Kim, Woo-Jae;Lee, Jae-Sam;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.53-56
    • /
    • 2008
  • Modern society is experiencing a high population density and a centralization of facilities. The clear trends in the construction field are aggrandizement, elevation and specialization of building structures. Such trends require improvements of skills in raising material performances, structuring, planning, designing, and increasing construction capacities. In order to procure high performance materials and construction techniques, a top-quality concrete should be used since it takes up a large part of the material. In recent years, active researches have been done on the ultra high strength concrete. Therefore, this experimental study is strength management to fixed quantity in the field of ultra-strong concrete.

  • PDF

Properties Strength and Autogenous Shrinkage on the Ultra High Performance Concrete by Fiber Type and Pre-mix Binder (섬유종류 및 결합재의 프리믹스에 따른 초고성능콘크리트의 강도 및 자기수축 특성)

  • Gu, Gyeong-Mo;Hwang, In-Seong;Kim, Won-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.275-276
    • /
    • 2018
  • Ultra high performance concrete(UHPC) represents high early age autogenous shrinkage strain due to its low water-to-binder ratio(W/B) and high fineness admixture usage. It has been reported that fiber can control restrained tensile stress and crack. The purpose of the present study is, therefore, to investigate the autogenous shrinkage as well as mechanical properties including compressive strength, flexural strength and modulus of elasticity on the UHPC with fiber type and pre-mix of binder.

  • PDF

Conceptual design of ultra-high performance fiber reinforced concrete nuclear waste container

  • Othman, H.;Sabrah, T.;Marzouk, H.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.588-599
    • /
    • 2019
  • This research presents a structural design of high-level waste (HLW) container using ultra-high performance fiber reinforced concrete (UHP-FRC) material. The proposed design aims to overcome the drawbacks of the existing concrete containers which are heavy, difficult to fabricate, and expensive. In this study, the dry storage container (DSC) that commonly used at Canadian Nuclear facilities is selected to present the proposed design. The design has been performed such that the new UHP-FRC alternative has a structural stiffness equivalent to the existing steel-concrete-steel container under various loading scenarios. Size optimization technique is used with the aim of maximizing stiffness, and minimizing the cost while satisfying both the design stresses and construction requirements. Then, the integrity of the new design has been evaluated against accidental drop-impact events based on realistic drop scenarios. The optimization results showed: the stiffness of the UHP-FRC container (300 mm wall thick) is being in the range of 1.35-1.75 times the stiffness of existing DSC (550 mm wall thick). The use of UHP-FRC leads to decrease the container weight by more than 60%. The UHP-FRC container showed a significant enhancement in performance in comparison to the existing DSC design under considered accidental drop impact scenarios.

Evaluation of Suitable Application of ultra high-strength Concrete to V.H Separated Placement (VH분리타설 공법의 초고강도 콘크리트 적용성 평가)

  • Kim, Hak-Young;Ki, Jun-Do;Park, Hyun;Lim, Byung Chun;Lee, Young Do;Jung, Sang Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.23-26
    • /
    • 2009
  • Despite vigorous studies on ultra high-strength concrete in Korea, it still faces many challenges in application to on-site construction methods. This study intends to evaluate the applicability of the VH separated-pouring method which is currently used and was designed to pour ultra high-strength concrete with a design strength of 60, 100N/㎟ separately to girder and beam. When it comes to VH separated-pouring, there is a difference in the required design strength between a girder and a beam, which tends to be larger for ultra high-strength concrete. The tensile strength and cold joint at the joint end have not been commonly evaluated and thus the inevitably of its use is dependent on a structural analysis of the structural stress of reinforcement. In the study, potential problems with respect to the building material which might occur during the pouring of ultra high-strength concrete was evaluated and issues on joint surface performance, the hydration energy contained in the members, and the effects of contraction in concrete were considered as the key elements for study.

  • PDF

Flexural behavior of RC beams retrofitted by ultra-high performance fiber-reinforced concrete

  • Meraji, Leila;Afshin, Hasan;Abedi, Karim
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.159-172
    • /
    • 2019
  • This paper presents an investigation into the flexural behavior of reinforced concrete (RC) beams retrofitted by ultra-high performance fiber-reinforced concrete (UHPFRC) layers. The experimental study has been conducted in two parts. In the first part, four methods of retrofitting with UHPFRC layers in both the up and down sides of the beams have been proposed and their efficiency in the bonding of the normal concrete and ultra-high performance fiber-reinforced concrete has been discussed. The results showed that using the grooving method and the pre-casted UHPFRC layers in comparison with the sandblasting method and the cast-in-place UHPFRC layers leads to increase the load carrying capacity and the energy absorption capacity and causes high bond strength between two concretes. In the second part of the experimental study, the tests have been conducted on the beams with single UHPFRC layer in the down side and in the up side, using the effective retrofitting method chosen from the first part. The results are compared with those of non-retrofitted beam and the results of the first part of experimental study. The results showed that the retrofitted beam with two UHPFRC layers in the up and down sides has the highest energy absorption and load carrying capacity. A finite element analysis was applied to prediction the flexural behavior of the composite beams. A good agreement was achieved between the finite element and experimental results. Finally, a parametric study was carried out on full-scale retrofitted beams. The results indicated that in all retrofitted beams with UHPFRC in single and two sides, increasing of the UHPFRC layer thickness causes the load carrying capacity to be increased. Also, increases of the normal concrete compressive strength improved the cracking load of the beams.

Recent Advances in Ultra-high Performance Concrete

  • Kim, Yail J.
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.163-172
    • /
    • 2013
  • This paper presents a comprehensive review of recent advances in ultra-high performance concrete (UHPC). Fundamental characteristics of UHPC are elaborated with focus on its material constituents, mixing, and formulation procedures. Use of state-of-the-art materials such as carbon nanotubes or nano-silica is discussed as well, whose inclusion may enhance the performance of UHPC. The review evaluates supplementary treatment methods (e.g., pressuring curing) and identifies applicable standard test methods for determining the properties and behavior of UHPC. Site implementation is provided to link laboratory research with full-scale application. Research needs are suggested to further develop UHPC technologies from technical and socio-economical perspectives.

Application of Ultra High Performance Concrete with Pre-mix Binder (프리믹스 결합재를 활용한 초고성능콘크리트의 현장적용)

  • Koo, Kyung-Mo;Kim, Ki-Hoon;Hwang, Yin-Seong;Kim, Won-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.172-173
    • /
    • 2019
  • In this study, application of ultra high performance concrete(UHPC) with pre-mix binder were presented on civil, architectural and special field. The UHPC can be applied to a variety of site due to its excellent flowability, mechanical properties, impact resistance and fire resistance. It is necessary to apply the pre-mix binder to take into account the productivity and performance improvements of the UHPC.

  • PDF