Proceedings of the Korean Vacuum Society Conference
/
1999.07a
/
pp.141-141
/
1999
전기화학과 초고진공(ultra-high vacuum, UHV) 분광법을 이용하여 고체/액체의 계면에서 일어나는 현상을 분자단위에서 이해하고 조절하기 위한 연구를 수행하였다. 이들 중 전기화학으로 형성된 구리 및 은 금속(sub)monlayer 박막을 그 예로 선택하여 소개한다. 초박막 금속의 흡착량은 cyclic voltammogram과 새로 개발된 Auger electron spectroscopy (AES) 정량법을 통해 얻어졌고, 이 값들은 low energy electron diffraction (LEED) 및 in-situ atomic force microscopy (AFM)법을 이용한 구조 분석결과와 비교되어졌다. 또한 화학상태를 확인하기 위하여 core-level electron energyy loss spectroscopy (CEELS)를 사용하였다. 먼저 황산 전해질에서 금(111) 단결정 전극상에 전기화학적으로 형성된 굴의 계면특성을 조사하였다. 특정 전위값에서 2/3 ML의 구리와 1/3 ML의 음이온이 상호 흡착하여 ({{{{ SQRT { 3} }}$\times${{{{ SQRT { 3} }}) 격자 구조를 보였고, 전위값이 커지거나 줄어들면, 이 구조가 사라지는 현상이 관찰되었다. 즉 이 ({{{{ SQRT { 3} }}}}$\times${{{{ SQRT { 3} }}}}) 흡착구조는 첫 번째 UPD underpotential deposition) 피크에 특이하게 관련되어 있음을 알 수 있었다. 금속 초박막 형성에 미치는 음이온의 영향을 좀 더 확인하기 위해 초박막 은이 증착된 금 단결정 전극상의 황산 음이온에 관하여 연구하였다. 은의 증착이 일어날 수 없는 양전위값 영역에서 ({{{{ SQRT { 3} }}}}$\times${{{{ SQRT { 3} }}}})의 규칙적인 음이온의 구조를 보였다. 그리고 은의 장착은 세척 과정과 용액의 농도에 따라 p(3$\times$3)과 p(5$\times$5)의 규칙적인 두가지 구조를 가졌다. in-situ AFM에서는 p(3$\times$3)의 은 증착 구조만 나타났고, 음 전위값으로 옮겨가면 p(1$\times$1) 구조로 바뀌었다. ex-situ 초고진공 결과와 이 AFM의 in-situ 결과를 상호 비교 논의할 것이다. 음이온의 흡착이 없는 묽은 플로르산(HF) 전해질에서 은은 전위값을 음전위 쪽으로 이동해 감에 따라 p(3$\times$3), p(5$\times$5), (5$\times$5), (6$\times$6), 그리고 (1$\times$1)의 연속적 구조 변화를 보였다. 이 다양한 구조들을 AES로부터 얻어진 표면 흡착량과 연결시켰더니 정량적으로 잘 일치되는 결과를 보였다. 전기화학적인 증착에서는 기존의 진공 증착과 비교할 때 음이온의 공흡착이 금속 초박막 형성 메카니즘에 큰 영향을 미침을 알 수 있었다. 또한 은의 전기화학적 다층박막 성장은 MSM (monolayer-simultaneous-multilayer) 메카니즘을 따름을 확인하였다. 마지막으로 구조 및 양이 규칙적으로 조절되는 전극의 응용가능성이 간단히 논의될 것이다.
Proceedings of the Korean Vacuum Society Conference
/
2011.02a
/
pp.279-279
/
2011
나노 입자를 이용한 비휘발성 메모리 소자의 전기적 특성 향상을 위하여 일함수가 Si 보다 큰 금속, 금속산화물, 금속 실리사이드 나노입자를 이용한 다양한 형태의 메모리 구조가 제안되어져 왔다.[1] 특히 이와 같은 나노 부유 게이트 구조에서 터널 절연막의 구조를 소자의 동작 속도를 결정하는데 이는 터널링 되어 주입되는 전자의 확률에 의존하기 때문이다. 양자 우물에 국한된 전하가 누설되지 않으면서 주입되는 전자의 터널링 확률을 증가시키기 위하여, dielectric constant 와 barrier height를 고려한 다양한 구조의 터널 절연막의 형태가 제안 되었다.[2-3] 특히 낮은 전계에서도 높은 터널링 확률은 메모리 소자의 동작 속도를 향상시킬 수 있다. 본 연구에서는 n형 Si 기판위에 Si3N4 및 HfAlO를 각각 1.5 nm 및 3 nm 로 atomic layer deposition 방법으로 증착하였으며 3~5 nm 지름을 가지는 $TiSi_2$ 및 $WSi_2$ 나노 입자를 형성한 후 컨트롤 절연막인 $SiO_2$를 ultra-high vacuum sputtering을 사용하여 20 nm 두께로 형성 하였다. 마지막으로 $200{\mu}m$ 지름을 가지는 Al 전극을 200 nm 두께로 형성하여 나노 부유 게이트 커패시터를 제작하였다. 제작된 소자는 Agilent E4980A precision LCR meter 및 HP 4156A precision semiconductor parameter analyzer 를 사용하여 전기용량-전압 및 전류-전압 특성분석을 하여 전하저장 특성 및 제작된 소자의 터널링 특성을 확인 하여 본 연구를 통하여 제작된 나노 부유 게이트 커패시터 구조가 메모리 소자응용이 가능함을 확인하였다.
Park, Joo-Nam;Nam, Seong-Won;Kim, Lee-Hyeon;Yeo, In-Ho
Journal of the Korean Society for Railway
/
v.14
no.2
/
pp.143-150
/
2011
This paper presents a preliminary study for air-tightness evaluation of vacuum tube structures for super-speed tube railway systems. The formula for flow rate of the air caused by the pressure difference of the inside and outside of the tube structure is derived based on Darcy's law. A test is then performed to measure the air-permeability of concrete with various compressive strengths, the result of which is used for analytical simulation of the air intrusion for a tube structure with a preliminarily defined section. It has been shown that concrete with the compressive strength of at least more than 50MPa is recommended for effective operation and maintenance of the vacuum pump systems, as the air-permeability of concrete is inversely proportional to the exponent of its compressive strength.
Proceedings of the Korean Vacuum Society Conference
/
2013.08a
/
pp.290.1-290.1
/
2013
The electrical characterization of Au islands on TiO2 at nanometer scale (as a Schottky nanodiode) has been studied with conductive atomic force microscopy in ultra-high vacuum. The diverse sizes of the Au islands were formed by using self-assembled patterns on n-type TiO2 semiconductor film using the Langmuir-Blodgett process. Local conductance images showing the current flowing through the TiN coated AFM probe to the surface of the Au islands on TiO2 was simultaneously obtained with topography, while a positive sample bias is applied. The boundary of the Au islands revealed a higher current flow than that of the inner Au islands in current AFM images, with the forward bias presumably due to the surface plasmon resonance. The nanoscale Schottky barrier height of the Au/TiO2 Schottky nanodiode was obtained by fitting the I-V curve to the thermionic emission equation. The local resistance of the Au/TiO2 nanodiode appeared to be higher at the larger Au islands than at the smaller islands. The results suggest that conductive atomic force microscopy can be used to reveal the I-V characterization of metal size dependence and the electrical effects of surface plasmon on a metal-semiconductor Schottky diode at nanometer scale.
Hwang, Jin Heui;Kwon, Sangku;Park, Joonbum;Lee, Jhinhwan;Kim, Jun Sung;Lyeo, Ho-Ki;Park, Jeong Young
Proceedings of the Korean Vacuum Society Conference
/
2013.08a
/
pp.128.1-128.1
/
2013
We investigated the correlation between electrical transport and mechanical stress in $Bi_2Te_2Se$ by using a conductive probe atomic force microscopy in an ultra-high vacuum environment. Uniform distribution of measured friction and current were observed over a single quintuple layer terrace, which is an indication of the uniform chemical composition of the surface. By measuring the charge transport of $Bi_2Te_2Se$ surface as a function of the load applied by a tip to the sample, we found that the current density varies with applied load. The variation of current density was explained in light of the combined effect of the changes in the in-plane conductance and spin-orbit coupling that were theoretically predicted. We suppose that the local density of states is modified by tip-induced strain, but topological phase still remains. We exposed a clean topological insulator surface by tip-induced indentation. The surface conductance on the indented $Bi_2Te_2Se$ surface was studied, and the role of surface oxide on the surface conductance is discussed.
Park, Seung-Kyu;Lee, Jonghyuk;Kim, Ran Hee;Jung, Juhyoung;Han, Wan Gyu;Lee, Soo Huan;Jeon, Sung Woo;Kim, Dae Jun;Kim, Do-Yun;Lee, Kwang-Sup
Korean Journal of Materials Research
/
v.29
no.4
/
pp.241-251
/
2019
There are several manufacturing techniques for developing thermionic cathodes for vacuum ultraviolet(VUV) ionizers. The triple alkaline earth metal emitters(Ca-Sr-Ba) are formulated as efficient and reliable thermo-electron sources with a great many different compositions for the ionizing devices. We prepare two basic suspensions with different compositions: calcium, strontium and barium. After evaluating the electron-emitting performance for europium, gadolinium, and yttrium-based cathodes mixed with these suspensions, we selected the yttrium for its better performance. Next, another transition metal indium and a lanthanide metal neodymium salt is introduced to two base emitters. These final composite metal emitters are coated on the tungsten filament and then activated to the oxide cathodes by an intentionally programmed calcination process under an ultra-high vacuum(${\sim}10^{-6}torr$). The performance of electron emission of the cathodes is characterized by their anode currents with respect to the addition of each element, In and Nd, and their concentration of cathodes. Compared to both the base cathodes, the electron emission performance of the cathodes containing indium and neodymium decreases. The anode current of the Nd cathode is more markedly degraded than that with In.
Proceedings of the Korean Vacuum Society Conference
/
2011.02a
/
pp.134-134
/
2011
High-k dielectric materials such as $HfO_2$, $ZrO_2$ and $Al_2O_3$ increase gate capacitance and reduce gate leakage current in MOSFET structures. This behavior suggests that high-k materials will be promise candidates to substitute as a tunnel barrier. Furthermore, stack structure of low-k and high-k tunnel barrier named variable oxide thickness (VARIOT) is more efficient.[1] In this study, we fabricated the $WSi_2$ nanocrystals nonvolatile memory device with $SiO_2/HfO_2/Al_2O_3$ tunnel layer. The $WSi_2$ nano-floating gate capacitors were fabricated on p-type Si (100) wafers. After wafer cleaning, the phosphorus in-situ doped poly-Si layer with a thickness of 100 nm was deposited on isolated active region to confine source and drain. Then, on the gate region defined by using reactive ion etching, the barrier engineered multi-stack tunnel layers of $SiO_2/HfO_2/Al_2O_3$ (2 nm/1 nm/3 nm) were deposited the gate region on Si substrate by using atomic layer deposition. To fabricate $WSi_2$ nanocrystals, the ultrathin $WSi_2$ film with a thickness of 3-4 nm was deposited on the multi-stack tunnel layer by using direct current magnetron sputtering system [2]. Subsequently, the first post annealing process was carried out at $900^{\circ}C$ for 1 min by using rapid thermal annealing system in nitrogen gas ambient. The 15-nm-thick $SiO_2$ control layer was deposited by using ultra-high vacuum magnetron sputtering. For $SiO_2$ layer density, the second post annealing process was carried out at $900^{\circ}C$ for 30 seconds by using rapid thermal annealing system in nitrogen gas ambient. The aluminum gate electrodes of 200-nm thickness were formed by thermal evaporation. The electrical properties of devices were measured by using a HP 4156A precision semiconductor parameter analyzer with HP 41501A pulse generator, an Agillent 81104A 80MHz pulse/pattern generator and an Agillent E5250A low leakage switch mainframe. We will discuss the electrical properties for application next generation non-volatile memory device.
Proceedings of the Korean Vacuum Society Conference
/
2015.08a
/
pp.61.1-61.1
/
2015
Nanoscale semiconductor plasma processing has become one of the most challenging issues due to the limits of physicochemical fabrication routes with its inherent complexity. The mission of future and emerging plasma processing for development of next generation semiconductor processing is to achieve the ideal nanostructures without abnormal profiles and damages, such as 3D NAND cell array with ultra-high aspect ratio, cylinder capacitors, shallow trench isolation, and 3D logic devices. In spite of significant contributions of research frontiers, these processes are still unveiled due to their inherent complexity of physicochemical behaviors, and gaps in academic research prevent their predictable simulation. To overcome these issues, a Korean plasma consortium began in 2009 with the principal aim to develop a realistic and ultrafast 3D topography simulator of semiconductor plasma processing coupled with zero-D bulk plasma models. In this work, aspects of this computational tool are introduced. The simulator was composed of a multiple 3D level-set based moving algorithm, zero-D bulk plasma module including pulsed plasma processing, a 3D ballistic transport module, and a surface reaction module. The main rate coefficients in bulk and surface reaction models were extracted by molecular simulations or fitting experimental data from several diagnostic tools in an inductively coupled fluorocarbon plasma system. Furthermore, it is well known that realistic ballistic transport is a simulation bottleneck due to the brute-force computation required. In this work, effective parallel computing using graphics processing units was applied to improve the computational performance drastically, so that computer-aided design of these processes is possible due to drastically reduced computational time. Finally, it is demonstrated that 3D feature profile simulations coupled with bulk plasma models can lead to better understanding of abnormal behaviors, such as necking, bowing, etch stops and twisting during high aspect ratio contact hole etch.
$Si(100){\backslash}200nm$$SiO_2{\backslash}5nm$$Ta{\backslash}5nm$$MgO{\backslash}35nm$$Fe_3O_4$ multi-layers were prepared by using RF-sputtering and ultra-high vacuum molecular beam epitaxy (UHV-MBE) techniques. After post-annealing the multi-layers at $500^{\circ}C$ for 1 hour under the high vacuum of ${\sim}1{\times}10^{-6}Torr$, we observed ferromagnetic properties at room temperature as well as the Verwey transition which is the typical features of magnetite crystals formed. We have carried out a comparative study of the effect of Ta buffered layer on the crystallinity and magnetic properties of $Fe_3O_4$ thin films prepared under different growth and annealing conditions.
Proceedings of the Korean Vacuum Society Conference
/
2010.08a
/
pp.178-178
/
2010
With the scaling down of ULSI(Ultra Large Scale Integration) circuit of CMOS(Complementary Metal Oxide Semiconductor)based electronic devices, the electronic devices become more faster and smaller size that are promising field of semiconductor market. However, very narrow line width has some disadvantages. For example, because of narrow line width, deposition of conformal and thin barrier is difficult. Besides, proportion of barrier width is large, thus resistance is high. Conventional PVD(Physical Vapor Deposition) thin films are not able to gain a good quality and conformal layer. Hence, in order to get over these side effects, deposition of thin layer used of ALD(Atomic Layer Deposition) is important factor. Furthermore, it is essential that copper atomic diffusion into dielectric layer such as silicon oxide and hafnium oxide. If copper line is not surrounded by diffusion barrier, it cause the leakage current and devices degradation. There are some possible methods for improving the these secondary effects. In this study, TaNx, is used of Tertiarybutylimido tris (ethylamethlamino) tantalum (TBITEMAT), was deposited on the 24nm sized trench silicon oxide/silicon bi-layer substrate with good step coverage and high quality film using plasma enhanced atomic layer deposition (PEALD). And then copper was deposited on TaNx barrier using same deposition method. The thickness of TaNx was 4~5 nm. TaNx film was deposited the condition of under $300^{\circ}C$ and copper deposition temperature was under $120^{\circ}C$, and feeding time of TaNx and copper were 5 seconds and 5 seconds, relatively. Purge time of TaNx and copper films were 10 seconds and 6 seconds, relatively. XRD, TEM, AFM, I-V measurement(for testing leakage current and stability) were used to analyze this work. With this work, thin barrier layer(4~5nm) with deposited PEALD has good step coverage and good thermal stability. So the barrier properties of PEALD TaNx film are desirable for copper interconnection.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.