• Title/Summary/Keyword: ultimate soil resistance

Search Result 73, Processing Time 0.018 seconds

Experimental study on axial response of different pile materials in organic soil

  • Canakci, Hanifi;Hamed, Majid
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.899-917
    • /
    • 2017
  • Sixty four tests were performed in a steel tank to investigate the axial responses of piles driven into organic soil prepared at two different densities using a drop hammer. Four different pile materials were used: wood, steel, smooth concrete, and rough concrete, with different length to diameter ratios. The results of the load tests showed that the shaft load capacity of rough concrete piles continuously increased with pile settlement. In contrast, the others pile types reached the ultimate shaft resistance at a settlement equal to about 10% of the pile diameter. The ratios of base to shaft capacities of the piles were found to vary with the length to diameter ratio, surface roughness, and the density of the organic soil. The ultimate unit shaft resistance of the rough concrete pile was always greater than that of other piles irrespective of soil condition and pile length. However, the ultimate base resistance of all piles was approximately close to each other.

Evaluation of Ultimate Lateral Resistance for Single Pile Using Strain Wedge Model in Sand (모래지반에서 쐐기모델을 이용한 단말뚝의 극한수평저항력 산정)

  • Kim, Ji-Seong;Kang, Gi-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.15-22
    • /
    • 2016
  • The magnitude of the lateral resistance that resists the lateral movement of the pile is controlled by the amount of the pile movement and the strength and stiffness of soil. In this paper, we proposed an equation which produces the ultimate lateral resistance of the laterally loaded single pile in sand using the strain wedge model of the soil deformation. The ultimate lateral resistance in strain wedge model is composed of earth pressure of wedge rear, the shear resistance on the side of the wedge, and the frictional resistance between pile and ground. The ultimate lateral resistance determined by the proposed equation was compared with the Ashour, F.D.M., field test in sand. As a result, the error of the proposed equation and Ashour theory, field test, F.D.M were respectively 1.03%, 0.40~3.32%, 6.02%.

Estimation of Ultimate Lateral Resistance for Lateral Loaded Short Piles Using CPT Results in Sand (CPT결과를 이용한 사질토지반에 관입된 짧은 단일말뚝의 극한수평단위지지력 산정)

  • Kim, Min-Kee;Hwang, Sung-Wook;Kyung, Du-Hyun;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1083-1086
    • /
    • 2008
  • In this study, Estimate solutions of ultimate lateral resistances for lateral loaded piles are proposed using cone penetration values, $q_c$ values, as CPT results. Cone penetration values, $q_c$ values measured on clean sand layers, are represented by factors for relative densities, axial stresses, and lateral stresses which are important on analysis of sandy soil layers. Also, these factors are same factors to consider existed estimations of ultimate lateral capacity. In this study, estimation of ultimate lateral capacity for lateral loaded piles using CPT results is proposed, and this estimation is verified by adequate analysis for effective reliability.

  • PDF

Estimation of Ultimate Pullout Resistance of Soil-Nailing Using Nonlinear (비선형회귀분석을 이용한 가압식 쏘일네일링의 극한인발저항력 판정)

  • Park, Hyun-Gue;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.65-75
    • /
    • 2016
  • In this study, we constructed a database by collecting field pullout test data of the soil nailing using pressurized grouting, and suggested a method to estimate the ultimate pullout resistance using nonlinear regression analysis to overcome the problems of ultimate pullout resistance estimation using graphical methods. The load-displacement curve estimated by nonlinear regression showed a very high correlation with the field pullout test data. Estimated ultimate pullout load by nonlinear regression method was average 29% higher than estimated ultimate pullout load using previous graphical method. A sigmoidal growth model was found to be the best-fitting nonlinear regression model against rapid pullout failure. Further, an asymptotic regression model was found to be the best fit against progressive nail pullout. The unit ultimate skin friction suggested in this research reflected in the domestic geotechnical characteristics and the specifications of the pressurized grouting method. This research is expected to contribute towards establishing an independent design standard for the soil nailing by providing solutions to the problems that occur when using design charts based on foreign research.

A Study on the Behaviour Mechanism of Jacket Anchor (자켓앵커 거동특성에 관한 연구)

  • Kim, Dong-Hee;Kim, In-Chul;Kong, Hyun-Seok;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1240-1249
    • /
    • 2008
  • Jacket anchor was developed to increase the pullout resistance of general ground anchor in soft ground, and the mechanism of pullout resistance of jacket anchor was analyzed. Also, the ultimate bond stress of jacket anchor was estimated by ultimate resistance which is determined by field tests. Grout milk was injected into the jacket to make grout bulb of jacket anchor. The formation of grout bulb of jacket anchor increases the diameter of grout bulb, ground strength and confining pressure between anchor grout and soil. From the twelve field test results, it was observed that the pullout resistance of jacket anchor is 15.38~295.02%(average 83.53%) greater than that of general ground anchor, and plastic deformation of jacket anchor is 20.78~1,496.45%(average 288.78%) smaller than that of general ground anchor at the same load cycle. Especially, it was investigated that the increase of ultimate resistance over 200% and the reduction of plastic deformation over 600% was obtained in gravel layer. It means that the jacket anchor is superior to the general ground anchor in gravel layer. Finally, the ultimate bond stress was proposed to design jacket anchor.

  • PDF

Estimation of Ultimate Lateral Load Capacity Using CPT Results Considering Lateral Soil Pressure Distribution (수평토압분포를 고려한 CPT 기반의 말뚝극한수평지지력 산정)

  • Kim, Min-Kee;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.37-44
    • /
    • 2009
  • In this study, estimation methodology for the pile of ultimation lateral resistance, pu, and ultimate lateral capacity, Pu, is based on the CPT cone resistance $q_c$. Preexistent methodologies for ultimate lateral resistance and ultimate lateral capacity have been generally represented with relative density, vertical effective stresses, and various $K_0$ values which are important for analyzing sandy soil. These methodologies, however, did not consider the horizontal effective stress and the effects of construction site conditions. Therefore, CPT-based methodology for the estimation of the ultimate lateral pile load capacity Hu was proposed. Calibration chamber test results were analyzed and compared with calculated results. The proposed estimation methodology for the pile of $p_u$ can be effectively utilized as alternative to preexistent methods.

A Study on Variation of Ultimate Pullout Resistance and Failure Behavior for Vertical Plate Anchors in Sands (앵커의 극한 지지력 변화와 파괴 거동에 관한 연구)

  • 장병욱;황명수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.4
    • /
    • pp.71-80
    • /
    • 1990
  • Model tests for the ultimate pullout resistance of anchorages and investigation of failure behaviors in cohesionless soil have been conducted. The factors affecting the anchorage are mostly the geometry of the system, and soil properties of sands. The main conclusions of the experimental work were as follows. 1. The load - displacement relationship can be a form of parabolic curve for all plates. 2. The change in ultimate pullout resistance of anchor is mostly affected by embedment ratio and size of anchor, and influenced to a lesser degree by its shape. 3. Critical embedment ratio which is defined as the failure mode changes from shallow to deep mode is increased with increasing height of anchor. 4. For a constant anchor height, as the width of anchor increases the ultimate pullout resistance also increases. However, considering the efficiency of anchor for unit area, width of anchor does not appear to have any sigrnificant contribution on increasing anchor city. 5. Anchor capacity has a linear relation to sand density for any given section and the rate of change increases as the section increases. Critical depth determining the failure patterns of anchor is decreased with a decrease of sand density. 6. With increasing inclination angle, size of anchor, and decreasing embedment ratio, the ultimate pullout resistance of anchor under inclined loading is significantly decreased. 7. The ultimate pullout resistance of double anchor, a method of improving single of anchor capacity, is influenced by the center - to - center spacing adjacent anchors. It is also found that tandem and parallel anchor rigging arrangements decrease the anchor system capacity to less than twice the single anchor capacity due to anchor interference.

  • PDF

Estimation of LRFD Resistance Bias Factors for Pullout Resistance of Soil-Nailing (쏘일네일링의 인발저항에 대한 LRFD 저항편향계수 산정)

  • Son, Byeong-Doo;Lim, Heui-Dae;Park, Joon-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.5-16
    • /
    • 2015
  • Considering the conversion of the Korea Construction Standards to Limit State Design (LSD), we analyzed the resistance bias factor for pullout resistance, as a part of the development of the Load and Resistance Factor Design (LRFD) for soil nailing; very few studies have been conducted on soil nailing. In order to reflect the local characteristics of soil nailing, such as the design and construction level, we collected statistics on pullout tests conducted on slopes and excavation construction sites around the country. In this study a database was built based on the geotechnical properties, soil nailing specifications, and pullout test results. The resistance bias factors are calculated to determine the resistance factor of the pullout resistance for gravity and pressurized grouting method, which are the most commonly used methods in Korea; moreover, we have relatively sufficient data on these methods. We found the resistance bias factors to be 1.144 and 1.325, which are relatively conservative values for predicting the actual ultimate pullout resistance. It showed that our designs are safer than those found in a research case in the United States (NCHRP Report); however, there was an uncertainty, $COV_R$, of 0.27-0.43 in the pullout resistance, which is relatively high. In addition, the pressurized grouting method has a greater margin of safety than the gravity grouting method, and the actual ultimate pullout resistance determined using the pressurized grouting method has low uncertainty.

Ultimate Lateral Resistance of Single Active Piles (단일주동말뚝의 극한수평저항각력)

  • 홍원표;박래웅
    • Geotechnical Engineering
    • /
    • v.3 no.3
    • /
    • pp.21-30
    • /
    • 1987
  • Some methods are presented to estimate the ultimate lateral resistance of single active piles subjected to lateral loads above the ground surface, considering the lateral soil reaction, the pile length and the fixity condition of a pile head. The lateral soil reaction acting on a single active pile embedded in soil due to pile movement can be estimated by use of a theoretical equation which is derived by considering especially the plastic state of ground surrounding the pile and the pile- section shape. The piles are named short or long depending upon the relative magnitude of the induced bending moment to the yielding moment. As for the fixity condition of a pile head, the free head and the unrotated head are considered. Comparison with other experimental results gives that the calculated ultimate lateral resistance obtained by the author's theory is closer to experimental results than the one obtained by Brom's theory.

  • PDF