• 제목/요약/키워드: ultimate loads

검색결과 452건 처리시간 0.023초

선체보강판의 해석영역에 따른 최종강도거동에 관한 연구 (A Study on the Ultimate Strength Behavior according to Analysis Boundary at Stiffened Plate)

  • 박주신;고재용
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.262-269
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used. On this study, to investigate effect of analysis range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of large merchant ship structures. For FEA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF

풍화암에 근입된 그라운드 앵커의 인발거동 연구 (A Study on the Pullout Behavior of Ground Anchored in Weatherd Rock)

  • 박병수;정길수;전상현;유남재
    • 산업기술연구
    • /
    • 제26권A호
    • /
    • pp.109-117
    • /
    • 2006
  • This study is an numerical study of predicting the behavior of anchor embedded in weathered rocks, subjected to uplift loads, about ultimate pullout capacity and the failure mechanism. Factors influencing the behavior of anchors were investigated by reviewing the data about in-situ anchor tests performing numerical modelling with changing the bondage length of anchor, diameter of anchor body and diameter of tenden, and by Correlations between those factors were evaluated to apply them to predict the behavior of anchors. As results of numerical analysis, a linear relationship between bondage length, diameter of anchor body and diameter of tenden with ultimate pullout capacity was obtained on the one hand, from the result of numerical analysis changing the Young's modulus of weathered rock, this parameter was found to inflence to load-displacement and ultimate pullout capacity within the range of 10%, which was mot so significant to affect.

  • PDF

Ultimate behaviour and rotation capacity of stainless steel end-plate connections

  • Song, Yuchen;Uy, Brian;Li, Dongxu;Wang, Jia
    • Steel and Composite Structures
    • /
    • 제42권4호
    • /
    • pp.569-590
    • /
    • 2022
  • This paper presents a combined experimental and numerical study on stainless steel end-plate connections, with an emphasis placed on their ultimate behaviour and rotation capacity. In the experimental phase, six connection specimens made of austenitic and lean duplex stainless steels are tested under monotonic loads. The tests are specifically designed to examine the close-to-failure behaviour of the connections at large deformations. It is observed that the rotation capacity is closely related to fractures of the stainless steel bolts and end-plates. In the numerical phase, an advanced finite element model suitable for fracture simulation is developed. The incorporated constitutive and fracture models are calibrated based on the material tests of stainless steel bolts and plates. The developed finite element model exhibits a satisfactory accuracy in predicting the close-to-failure behaviour of the tested connections. Finally, the moment resistance and rotation capacity of stainless steel end-plate connections are assessed based on the experimental tests and numerical analyses.

충돌 손상된 선체구조의 최종 종강도에 관한 실험적 연구 (An Experimental Study on the Ultimate Longitudinal Strength of Ship Structures Damaged due to Side Collision)

  • 이탁기;임채환
    • 한국해양공학회지
    • /
    • 제22권2호
    • /
    • pp.85-90
    • /
    • 2008
  • Ships in bad weather conditions are likely to be subjected to accidental loads, such as high bending moment, collision, and grounding. Once she has damage to her hull, her ultimate strength will be reduced. This paper discusses an investigation of the effect of collision damage on the ultimate strength of a ship structure by performing a series of collapse tests. For the experiment, five box-girder models with stiffeners were prepared with a cross section of $720mm\;{\times}\;720mm$ and a length of 900mm. Of the five, one had no damage and four had an ellipse shaped damage area that represented the shape of the bulbous bow of a colliding ship. The amount of damage size was different between models. Among the damaged models, the damage in three of them was made by cutting the plate and stiffener, and in one by pressing to represent collision damage. Experiments were carried out under a pure bending load and the applied load and displacements were recorded. The ultimate strength was reduced as the damage size increased, as expected. The one with the largest amount of damage had damage to 30% of the depth, and its ultimate strength was reduced by 19% compared to the undamaged one. The pressed one has higher ultimate strength than those that were cut. This might be due to the fact that the plate around the pressed damage area contributes to the ultimate strength, whereas the cut one has no plate to contribute.

Wind loads and wind-resistant behaviour of large cylindrical tanks in square-arrangement group. Part 2: CFD simulation and finite element analysis

  • Liu, Qing;Zhao, Yang;Cai, Shuqi;Dong, Shilin
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.495-508
    • /
    • 2020
  • To investigate the structural behaviour of grouped tanks under wind loads, 2 problems need to be figured out, wind pressures on tank shells and critical loads of the shell under these pressure distribution patterns. Following the wind tunnel tests described in the companion paper, this paper firstly seeks to obtain wind loads on the external wall in a squarely-arranged cylindrical tank group by numerical simulation, considering various layouts. The outcomes demonstrate that the numerical method can provide similar results on wind pressures and better insights on grouping effects through extracted streamlines. Then, geometrically nonlinear analyses are performed using several selected potentially unfavourable wind pressure distributions. It is found that the critical load is controlled by limit point buckling when the tank is empty while excessive deformations when the tank is full. In particular, significant reductions of wind resistance are found on grouped full tanks compared to the isolated tank, considering both serviceability and ultimate limit state, which should receive special attention if the tank is expected to resist severe wind loads with the increase of liquid level.

Bound of aspect ratio of base-isolated buildings considering nonlinear tensile behavior of rubber bearing

  • Hino, J.;Yoshitomi, S.;Tsuji, M.;Takewaki, I.
    • Structural Engineering and Mechanics
    • /
    • 제30권3호
    • /
    • pp.351-368
    • /
    • 2008
  • The purpose of this paper is to propose a simple analysis method of axial deformation of base-isolation rubber bearings in a building subjected to earthquake loading and present its applicability to the analysis of the bound of the aspect ratio of base-isolated buildings. The base shear coefficient is introduced as a key parameter for the bound analysis. The bound of the aspect ratio of base-isolated buildings is analyzed based on the relationship of the following four quantities; (i) ultimate state of the tensile stress of rubber bearings based on a proposed simple recursive analysis for seismic loading, (ii) ultimate state of drift of the base-isolation story for seismic loading, (iii) ultimate state of the axial compressive stress of rubber bearings under dead loads, (iv) prediction of the overturning moment at the base for seismic loading. In particular, a new recursive analysis method of axial deformation of rubber bearings is presented taking into account the nonlinear tensile behavior of rubber bearings and it is shown that the relaxation of the constraint on the ultimate state of the tensile stress of rubber bearings increases the limiting aspect ratio.

Ultimate strength of composite structure with different degrees of shear connection

  • Kim, Sang-Hyo;Jung, Chi-Young;Ahn, Jin-Hee
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.375-390
    • /
    • 2011
  • Composite beam, which combined the material characteristic of the steel and concrete, has been widely used in the construction of various building and bridge system. For the effective application of the composite beam, the composite action on the composite interface between the concrete element and the steel element should be achieved by shear connectors. The behavioral characteristics of composite beam are related with the degree of interaction and the degree of shear connection according to the shear strength and shear stiffness of the stud shear connectors. These two concepts are also affected by the number of installed shear connector and the strength of composite materials. In this study, experimental and analytical evaluations of the degree of shear connection affected by stud diameter were conducted, and the relationship between structural behavior and the degree of shear connection was verified. The very small difference among the ultimate loads of the specimens depending on the change of the degree of connection was possibly because of the dependence of the ultimate load on the characteristic of plastic moment of the composite beam.

쓰레기 매립층에서 그라운드 앵커의 극한하중 및 하중분포 (Ultimate Load and Load Distribution of Ground Anchor in Waste Landfill)

  • 김성규;조규완;김웅규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1434-1441
    • /
    • 2005
  • For anchored system applications, each ground anchor is tested after installation and prior to being put into service to loads that exceed the design. This load testing methodology, combined with specific acceptance criteria, is used to verify that the ground anchor can carry the design load without excessive deformations and that the assumed load transfer mechanisms have been properly developed behind the assumed critical failure surface. After acceptance, the ground anchor is stressed to a specified load and the load is locked-off. The two types of load tests conducted during the research program included performance test and creep test which were carried out in accordance with testing procedures by AASHTO(AASHTO 1990) and FHWA(Weatherby 1998) at Samsung-Dong 00 Site. Form the measurements, ultimate load and creep rate of anchors are proposed for straight shaft pressured grouted anchors in waste landfill. The load distribution on the grout was obtained from the measured strain data at each fraction of the ultimate load during the load tests.

  • PDF

An Improved Analysis Model for the Ultimate Behavior of Unbonded Prestressed Concrete

  • 조태준;김명한
    • 한국공간구조학회논문집
    • /
    • 제17권4호
    • /
    • pp.149-157
    • /
    • 2017
  • An innovative analysis method is proposed in this paper for the determination of ultimate resistance of prestressed concrete beams. The proposed method can be applied to simply supported or continuous beams in a unified manner whether structure and external loads are symmetric or not. Through the iterative nonlinear strain compatibility solutions, this method can also be applied to the non-prismatic section/un-symmetrical composite structures under moving load. The conventional studies have used the failure criteria when the strain of concrete reaches 0.003. However compared with bonded case, the value of strain in the reinforcement is much smaller than bonded case, thus, unbonded prestressed cases show compressive failure mode. It is shown that the proposed method gives acceptable results within 5% error compared with the prior experimental results. It can be shown that the proposed method can reach the solution much faster than typical three-dimensional finite element analysis for the same problem. This method is applicable to the existing unbonded prestressed members where deterioration has occurred leading to the reduced ultimate resistance or safety. In all, the proposed procedure can be applied to the design and analysis of newly constructed structures, as well as the risk assessment of rehabilitated structures.

Design and behaviour of double skin composite beams with novel enhanced C-channels

  • Yan, Jia-Bao;Guan, Huining;Wang, Tao
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.517-532
    • /
    • 2020
  • This paper firstly developed a new type of Double Skin Composite (DSC) beams using novel enhanced C-channels (ECs). The shear behaviour of novel ECs was firstly studied through two push-out tests. Eleven full-scale DSC beams with ECs (DSCB-ECs) were tested under four-point loading to study their ultimate strength behaviours, and the studied parameters were thickness of steel faceplate, spacing of ECs, shear span, and strength of concrete core. Test results showed that all the DSCB-ECs failed in flexure-governed mode, which confirmed the effective bonding of ECs. The working mechanisms of DSCB-ECs with different parameters were reported, analysed and discussed. The load-deflection (or strain) behaviour of DSCB-ECs were also detailed reported. The effects of studied parameters on ultimate strength behaviour of DSCB-ECs have been discussed and analysed. Including the experimental studies, this paper also developed theoretical models to predict the initial stiffness, elastic stiffness, cracking, yielding, and ultimate loads of DSCB-ECs. Validations of predictions against 11 test results proved the reasonable estimations of the developed theoretical models on those stiffness and strength indexes. Finally, conclusions were given based on these tests and analysis.