• Title/Summary/Keyword: ultimate loads

Search Result 454, Processing Time 0.023 seconds

A Study on the Effects of Turbulence to Ultimate Loads Acting on the Blade of Wind Turbine (풍력발전시스템의 블레이드에 작용하는 극한하중에 대한 난류의 영향 연구)

  • Hyun, Seung-Gun;Kim, Keon-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2013
  • This study has analysed the ultimate loads acting on a wind turbine which is operating in a high turbulent flow condition because the ultimate loads are critical factors on the safe design of wind turbine. Since wind flow on the most parts of Korean mountainous are strongly influenced by complex configurations of the topography, turbulence intensity on somewhere is so stronger than an international design standard. For this reason, the characteristics of turbulent wind data collected from actual sites were analyzed and used for the ultimate load evaluation of the wind turbine. With the 270 design load cases on the international standards, the differences of ultimate loads on the wind turbine operating in the standard or high turbulent wind condition are calculated and compared for the an enhanced knowledge of the safe design basis. As are result, it is revealed the specific ultimate loads are strongly affected by the high turbulent wind conditions, thus the characteristics of turbulent flow must be considered during the design of wind turbine.

A Study on the Lateral Pressure Effect for Ultimate Strength of Ship Platings (선체판부재의 최종강도에 대한 횡압력의 영향에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo;Lee Kyung-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.583-591
    • /
    • 2005
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design of ship structures, it is of crucial importance to bitter understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

Effects of Loading Method on the Behavior of Laterally Cyclic Loaded Piles in Sand (모래지반에서 재하방법이 반복수평하중을 받는 말뚝의 거동에 미치는 영향)

  • Paik, Kyu-Ho;Kim, Young-Jun;Lee, Seung-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.63-73
    • /
    • 2011
  • The behavior of laterally cyclic loaded piles is affected by the magnitude and number of cycles of cyclic lateral loads as well as loading method (1-way or 2-way loading). In this study, calibration chamber tests were carried out to investigate the effects of loading method of cyclic lateral loads on the behavior of piles driven into sand. Results of the chamber tests show that the permanent lateral displacement of 1-way cyclic loaded piles is developed in the same direction as the first loading, whereas that of 2-way cyclic loaded piles is developed in the reverse direction of the first loading. 1-way cyclic lateral loads cause a decrease of the ultimate lateral load capacity of piles, and 2-way cyclic lateral loads cause an increase of the ultimate lateral load capacity of piles. The change of ultimate lateral load capacity with loading method of cyclic lateral loads increases with increasing number of cycles. It is also observed that the 1-way cyclic loads generate greater maximum bending moment than 2-way cyclic loads for piles in cyclic loading step and generates smaller maximum bending moment for piles in the ultimate state. It can be attributed to the difference in compaction degree of the soil around the piles with loading method of cyclic lateral loads. In addition, it is founded that 1-way and 2-way cyclic lateral loads cause a decrease in the maximum bending moment of piles in the ultimate state compared with that of piles subjected to only monotonic loads.

Decrease trends of ultimate loads of eccentrically loaded model strip footings close to a slope

  • Cure, Evrim;Sadoglu, Erol;Turker, Emel;Uzuner, Bayram Ali
    • Geomechanics and Engineering
    • /
    • v.6 no.5
    • /
    • pp.469-485
    • /
    • 2014
  • A series of bearing capacity tests was conducted with eccentrically loaded model surface and shallow strip footings resting close to a slope to investigate behavior of such footings (ultimate loads, failure surfaces, load-displacement curves, rotation of footing, etc.). Ultimate loads of footing close to slope decreased with increasing eccentricity for both surface and shallow footings. Failure surfaces were not symmetrical, primary failure surfaces occurred on the eccentricity side (the slope side) and secondary failure surfaces occurred on the other side. Lengths of failure surfaces decreased with increasing eccentricity. Footings always rotated towards eccentricity side a few degrees. For eccentrically loaded footing, decrease in ultimate load with increasing eccentricity is roughly in agreement with Customary Analysis.

Behavior of reinforced lightweight aggregate concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Al-Aziz, Basma M. Abdul
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.117-126
    • /
    • 2018
  • This research investigate the behavior of reinforced normal and lightweight aggregate concrete hollow core slabs with different core shapes, shear span to effective depth (a/d). The experimental work includes testing seven reinforced concrete slabs under two vertical line loads. The dimensions of slab specimens were (1.1 m) length, (0.6 m) width and (0.12 m) thickness. The maximum reduction in weight due to aggregate type was (19.28%) and due to cross section (square and circular) cores was (17.37 and 13.64%) respectively. The test results showed that the decrease of shear span to effective depth ratio from 2.9 to 1.9 for lightweight aggregate solid slab cause an increase in ultimate load by (29.06%) and increase in the deflection value at ultimate load or the ultimate deflection by (17.79%). The use of lightweight aggregate concrete in casting solid slabs give a reduction in weight by (19.28%) and in the first cracking and ultimate loads by (16.37%) and (5%) respectively for constant (a/d=2.9).The use of lightweight aggregate concrete in casting hollow circular core slabs with constant (a/d=2.9) (reduction in weight 32.92%) decrease the cracking and ultimate loads by (12%) and (5.18%) respectively with respect to the solid slab. These slab specimens were analyzed numerically by using the finite element computer program ANSYS. Good agreements in terms of behavior, cracking load (load at first visible crack) and ultimate load (maximum value of testing load) was obtained between finite element analysis and experimental test results.

Design and ultimate behavior of RC plates and shells: two case studies

  • Min, Chang-Shik
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.171-190
    • /
    • 2002
  • Two cases of design are performed for the hyperbolic paraboloid saddle shell (Lin-Scordelis saddle shell) and the hyperbolic cooling tower (Grand Gulf cooling tower) to check the design strength against a consistent design load, therefore to verify the adequacy of the design algorithm. An iterative numerical computational algorithm is developed for combined membrane and flexural forces, which is based on equilibrium consideration for the limit state of reinforcement and cracked concrete. The design algorithm is implemented in a finite element analysis computer program developed by Mahmoud and Gupta. The amount of reinforcement is then determined at the center of each element by an elastic finite element analysis with the design ultimate load. Based on ultimate nonlinear analyses performed with designed saddle shell, the analytically calculated ultimate load exceeded the design ultimate load from 7% to 34% for analyses with various magnitude of tension stiffening. For the cooling tower problem the calculated ultimate load exceeded the design ultimate load from 26% to 63% with similar types of analyses. Since the effective tension stiffening would vary over the life of the shells due to environmental factors, a degree of uncertainty seems inevitable in calculating the actual failure load by means of numerical analysis. Even though the ultimate loads are strongly dependent on the tensile properties of concrete, the calculated ultimate loads are higher than the design ultimate loads for both design cases. For the cases designed, the design algorithm gives a lower bound on the design ultimate load with respect to the lower bound theorem. This shows the adequacy of the design algorithm developed, at least for the shells studied. The presented design algorithm for the combined membrane and flexural forces can be evolved as a general design method for reinforced concrete plates and shells through further studies involving the performance of multiple designs and the analyses of differing shell configurations.

The Development of Ultimate Compressive Strength for Ship Curved Plates (선체곡판의 압축최종강도 설계식의 개발)

  • 박영일;권용우;백점기;이제명;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.101-109
    • /
    • 2004
  • Ship structures is thin-walled structures and she has lots of curved platings. In these days, lots different kinds of closed-formulas are development for ultimate strength of flat plate but for curved panels, there are not enough study or papers for this field. In this study, the ultimate strength characteristics for ship curved plates are studied. The ship plating is generally subjected to combined in-plane and lateral pressure loads. In-plane loads included biaxial compression/tension and edge shear. This is first report about the developing of ultimate compressive strength for ship curved plating. A closed-form formula for predicting the ultimate compressive strength of curved plates are empirically derived by curve fitting based on the computed results. The results and insights developed in the present study will be useful for damage tolerant design of curved plated structures.

  • PDF

RC deep beams with unconventional geometries: Experimental and numerical analyses

  • Vieira, Agno Alves;Melo, Guilherme Sales S.A.;Miranda, Antonio C.O.
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.351-365
    • /
    • 2020
  • This work presents numerical and experimental analyses of the behavior of reinforced-concrete deep beams with unconventional geometries. The main goal here is to experimentally and numerically study these geometries to find possible new behaviors due to the material nonlinearity of reinforced concrete with complex geometries. Usually, unconventional geometries result from innovative designs; in general, studies of reinforced concrete structures are performed only on conventional members such as beams, columns, and labs. To achieve the goal, four reinforced-concrete deep beams with geometries not addressed in the literature were tested. The models were numerically analyzed with the Adaptive Micro Truss Model (AMTM), which is the proposed method, to address new geometries. This work also studied the main parameters of the constitutive model of concrete based on a statistical analysis of the finite element (FE) results. To estimate the ultimate loads, FE simulations were performed using the Monte Carlo method. Based on the obtained ultimate loads, a probabilistic distribution was created, and the final ultimate loads were computed.

A Experimental Study on the Control of Premature Failure of RC Beams strengthened by Steel Plates (강판으로 보강된 RC보의 조기파괴제어에 관한 실헙적 연구)

  • 심종성;한만엽;김규선;이인범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.585-591
    • /
    • 1998
  • In the case of reinforced concrete beams strengthening by steel plate, sometimes these beams collapse due to the stress concentration at the ends of steel plates before the design expected failure. This kind of failure is called premature failure. This study analyzes the behavior of strengthened RC beams to control premature failure of these plated beams with either changing the geometries at the ends of plates or strengthening steel plates beside the ends. The results from the former cases show that, the effect of expanded plates sections at the ends was very small, and the beams which are rounded the ends of plates effectively increased the initial rip-off loads about 14% compared with control beam but the ultimate loads was almost same. However, the beams in the latter cases effectively increased the initial and the ultimate rip-off loads with changing failure mode, especially around 14~19% in the ultimate rip-off load comparing with control beam.

  • PDF

Analysis and prediction of ultimate strength of high-strength SFRC plates under in-plane and transverse loads

  • Perumal, Ramadoss;Palanivel, S.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1273-1287
    • /
    • 2014
  • Plates are most widely used in the hulls of floating concrete structures, bridge decks, walls of off-shore structures and liquid storage tanks. A method of analysis is presented for the determination of load-deflection response and ultimate strength of high-strength steel fiber reinforced concrete (HSSFRC) plates simply supported on all four edges and subjected to combined action of external compressive in-plane and transverse loads. The behavior of HSSFRC plate specimens subjected to combined uniaxial in-plane and transverse loads was investigated. The proposed analytical method is compared to the physical test results, and shows good agreement. To predict the constitutive behavior of HSSFRC in compression, a non-dimensional characteristic equation was proposed and found to give reasonable accuracy.