• Title/Summary/Keyword: ultimate compression strength

Search Result 241, Processing Time 0.022 seconds

Ultimate and fatigue response of shear dominated full-scale pretensioned concrete box girders

  • Saiidi, M. Saiid;Bush, Anita
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.353-367
    • /
    • 2006
  • Two full-scale, precast, pretensioned box girders were subjected to shear-dominated loading, one under monotonic loads to failure and the other subjected to one-half million cycles of fatigue loads followed by monotonic ultimate loads. The number of cycles was selected to allow for comparison with previous research. The fatigue loads were applied in combination with occasional overloads. In the present study, fatigue loading reduced the shear capacity by only six percent compared to the capacity under monotonic loading. However, previous research on flexure-dominated girders subjected to the same number of repeated loads showed that fatigue loading changed the mode of failure from flexure to shear/flexure and the girder capacity dropped by 14 percent. The comparison of the measured data with calculated shear capacity from five different theoretical methods showed that the ACI code method, the compression field theory, and the modified compression field theory led to reasonable estimates of the shear strength. The truss model led to an overly conservative estimate of the capacity.

Modified model of ultimate concrete compression strain (콘크리트의 극한변형률 수정모델)

  • Ko, Seong-Hyun;Lee, Jae-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.81-84
    • /
    • 2008
  • The purposes of this study are to verify a reasonable model of material characteristic and to propose a rational model of reinforcement characteristic considering monotonic and cyclic loading about manufactured reinforcing steel in Korea. Longitudinal reinforcements of the plastic hinge region were behaved tensile deformation and compressional deformation by direction of lateral loading. However Confinement steels were behaved only tensile deformation by lateral loading. Transverse steels were laid the state of tension in the lateral loading of time, and they were laid state that stress is zero when it was removed lateral load. The tests for cyclic tension loading were performed for test variable as yield strength and reinforcement bar sizes. It was estimated that the total strain energy per unit volume was 74 $MJ/m^3$. The modified ultimate concrete compression strain model was proposed based on experimental study of cyclic tension test for manufactured reinforcing steel in Korea.

  • PDF

An Experimental Study on the Structural Behavior of Reinforced Concrete Compressive Members Rehabilitated with Carbon Fiber Laminate (탄소섬유판으로 횡보강된 콘크리트 압축부재의 구조거동에 관한 실험적 연구)

  • Lee, Hee-Kyoung;Kim, Sung-Chul;Yoo, Seong-Hoon;Kim, Joong-Koo;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.679-684
    • /
    • 1997
  • In this study, compressive strengths of reinforced concrete compression members rehabilitated with C.F.L. were analyzed from the test. Test parameters are spacing, spliced length, and section area of rehabilitation material. Displacement, failure load were measured during test. The failure mode and ultimate load were analyzed from these measured data. Test result shows that closer spacing of C.F.L. is more effective. strengthening with 1-ply C.F.L. is more effective than that of specimen with 2-ply C.F.L. The compressive capacity of specimen spliced ($\pi$.D)/2 shows almost similar strength to that of non-spliced specimen. The ultimate load carrying capacity of specimen strengthened with C.F.L. is increased to 1.11~1.68 times of that of non-rehabilitation specimen.

  • PDF

Ultimate behavior of composite beams with shallow I-sections

  • Gorkem, Selcuk Emre;Husem, Metin
    • Steel and Composite Structures
    • /
    • v.14 no.5
    • /
    • pp.493-509
    • /
    • 2013
  • Bending behavior of reinforced concrete slabs encased over shallow I-sections at different levels of compression heads were investigated in present study. 1500 mm long I-sections were used to create composite slabs. Compression heads of monolithic experimental members were encased at different levels into the concrete slabs. Shear connections were welded over some of the I-sections. The testing was carried out in accordance with the principles of four-point loading. Results revealed decreasing load bearing and deflection capacities of composite beams with increasing encasement depths into concrete. Mechanical properties of concrete and reinforcing steel were also examined. Resultant stresses calculated for composite beams at failure were found to be less than the yield strength of steel beams. Test results were discussed with regard to shear and slip effect.

Research on the Mechanical Properties of Some New Aluminum Alloy Composite Structures in Construction Engineering

  • Mengting Fan;Xuan Wang
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.72-78
    • /
    • 2024
  • The lightweight and high strength characteristics of aluminum alloy materials make them have promising prospects in the field of construction engineering. This paper primarily focuses on aluminum alloy materials. Aluminum alloy was combined with concrete, wood and carbon fiber reinforced plastic (CFRP) cloth to create a composite column. The axial compression test was then conducted to understand the mechanical properties of different composite structures. It was found that the pure aluminum tube exhibited poor performance in the axial compression test, with an ultimate load of only 302.56 kN. However, the performance of the various composite columns showed varying degrees of improvement. With the increase of the load, the displacement and strain of each specimen rapidly increased, and after reaching the ultimate load, both load and strain gradually decreased. In comparison, the aluminum alloy-concrete composite column performed better than the aluminum alloy-wood composite column, while the aluminum alloy-wood-CFRP cloth composite column demonstrated superior performance. These results highlight excellent performance potential for aluminum alloy-wood-CFRP composite columns in practical applications.

Average Compressive Strengths of Stiffened Plates for In-Service Vessels Under Lateral Pressure (횡압력을 받는 실선 보강판의 평균압축강도)

  • Choung, Joon-Mo;Jeon, Sang-Ik;Lee, Min-Seong;Nam, Ji-Myung;Ha, Tae-Bum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.330-335
    • /
    • 2011
  • This paper presents estimation of average compressive strengths of three types of stiffened panels under lateral pressure and axial compression based on simplified formulas from CSRs and nonlinear FEAs. FEA scenarios are prepared based on the slenderness ratios of the stiffened panels used for in-service vessels. The seven step lateral pressures by 1bar increment are imposed on FE models assuming maximum 30m water height. The number of FEAs for FB-, AB-, and TB-stiffened panels is totally 189 times. FEA results show that existence of pressure can evolves significant reduction of ultimate strengths, meanwhile CSR formulas do not take into account the lateral pressure effect. Lateral pressure acting on the stiffened panel with higher column slenderness ratio more reduces the ultimate strengths than those with smaller column slenderness ratio. A new concept of relative average compressive strain energy instead of the ultimate strength is introduced in order to rationally compare the average compressive strength through complete compressive straining regime. The differences of the ultimate strengths between CSR formulas and FEA results are relatively small for FB- and AB-stiffened panels, but larger discrepancies of relative average compressive strain energies are shown.

Effect of Elevated Temperature on Mechanical Properties of Limestone, Quartzite and Granite Concrete

  • Tufail, Muhammad;Shahzada, Khan;Gencturk, Bora;Wei, Jianqiang
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • Although concrete is a noncombustible material, high temperatures such as those experienced during a fire have a negative effect on the mechanical properties. This paper studies the effect of elevated temperatures on the mechanical properties of limestone, quartzite and granite concrete. Samples from three different concrete mixes with limestone, quartzite and granite coarse aggregates were prepared. The test samples were subjected to temperatures ranging from 25 to $650^{\circ}C$ for a duration of 2 h. Mechanical properties of concrete including the compressive and tensile strength, modulus of elasticity, and ultimate strain in compression were obtained. Effects of temperature on resistance to degradation, thermal expansion and phase compositions of the aggregates were investigated. The results indicated that the mechanical properties of concrete are largely affected from elevated temperatures and the type of coarse aggregate used. The compressive and split tensile strength, and modulus of elasticity decreased with increasing temperature, while the ultimate strain in compression increased. Concrete made of granite coarse aggregate showed higher mechanical properties at all temperatures, followed by quartzite and limestone concretes. In addition to decomposition of cement paste, the imparity in thermal expansion behavior between cement paste and aggregates, and degradation and phase decomposition (and/or transition) of aggregates under high temperature were considered as main factors impacting the mechanical properties of concrete. The novelty of this research stems from the fact that three different aggregate types are comparatively evaluated, mechanisms are systemically analyzed, and empirical relationships are established to predict the residual compressive and tensile strength, elastic modulus, and ultimate compressive strain for concretes subjected to high temperatures.

Experimental Study of Flexural Behavior of Reinforced Concrete Beam Using WFS and Recycled Aggregate (순환골재와 폐주물사를 활용한 철근콘크리트보의 휨거동에 관한 실험연구)

  • Kim, Seong-Soo;Lee, Dae-Kyu
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.61-68
    • /
    • 2008
  • For the recycling of the resources and the preservation of the environment, this study's purpose is to measure flexural behavior of the reinforced concrete beams with the major variables like concrete strength, replacement ratio of the recycled aggregate and the waste foundry sand and the tension reinforcement ratio and to present the data of the recycled aggregate used for the structure design. The experiment on the flexural behavior resulted in the followings. The ultimate strength of recycled R/C beam was manipulated proportionate to the tension reinforcement ratio, however the strength instantly decreased after passing the ultimate load due to the destroyed concrete of the compression side. The deflection at the maximum load varied from the tension reinforcement ratio by 5.5 times. The test specimen with the tension reinforcement ratio less than $0.5{\rho}b$ showed constant curve without change in the load from the yield to the ultimate load in contrast to the distinctive plastic region where the displacement was rising. Although the strain of main tension steel with the reinforcement ratio indicate different, the design of recycled concrete member can be applied for current design code for reinforced concrete structure as the ratio of tension reinforcement district the under the reinforcement ration in a balanced strain condition.

An Empirical Formulation for Predicting the Ultimate Compressive Strength of Plates and Stiffened Plates (판 및 보강판의 압축최종강도 실험식)

  • J.K. Paik;J.M. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.8-21
    • /
    • 1996
  • The aim of this study is to derive an empirical formula for predicting ultimate strength of plates and stiffened plates subjected to uniaxial compression. The test data of ultimate compressive strength for unstiffened and stiffened plates previously obtained by others have been collected. Many test data are necessary so that the derived formula will be available in wide range of plate dimensions. Additional collapse tests for a plate specimen with one flat bar stiffener, varying dimensions of plate and stiffener were performed in this study. On the basis of the present and previous experimental data, a more useful empirical formula than the existing ones was derived by applying the least square method.

  • PDF

Influence of spacers on ultimate strength of intermediate length thin walled columns

  • Anbarasu, M.;Sukumar, S.
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.437-454
    • /
    • 2014
  • The influence of spacers on the behaviour and ultimate capacity of intermediate length CFS open section columns under axial compression is investigated in this paper. The focus of the research lies in the cross- section predominantly, failed by distortional buckling. This paper made an attempt to either delay or eliminate the distortional buckling mode by the introduction of transverse elements referred herein as spacers. The cross-sections investigated have been selected by performing the elastic buckling analysis using CUFSM software. The test program considered three different columns having slenderness ratios of 35, 50 & 60. The test program consisted of 14 pure axial compression tests under hinged-hinged end condition. Models have been analysed using finite element simulations and the obtained results are compared with the experimental tests. The finite element package ABAQUS has been used to carry out non-linear analyses of the columns. The finite element model incorporates material, geometric non-linearities and initial geometric imperfection of the specimens. The work involves a wide parametric study in the column with spacers of varying depth and number of spacers. The results obtained from the study shows that the depth and number of spacers have significant influence on the behaviour and strength of the columns. Based on the nonlinear regression analysis the design equation is proposed for the selected section.