• Title/Summary/Keyword: ugv

Search Result 96, Processing Time 0.024 seconds

Development of a Small UGV for Vertical Obstacle Negotiation (수직장애물 환경 주행 능력향상을 위한 소형 UGV 플랫폼 설계)

  • Kim, Ji-Chul;Park, Jong-Won;Baek, Joo-Hyun;Ryu, Jae-Kwan;Kim, Beom-Su;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1166-1173
    • /
    • 2011
  • There have been many researches about SUGV (Small Unmanned Ground Vehicle) mechanism regarding off-road mobility and obstacle negotiation. This paper introduces an analysis of geometry parameters to enhance the vertical obstacle negotiation ability for the SUGV. Moreover, this paper proposes an anti-shock structure analysis of wheels to protect the main body of the SUGV when it falls off a vertical obstacle. Major system geometry parameters will be determined under certain constraints. The constraints and optimization problem for maximizing the ability of vertical obstacle negotiation will be presented and discussed. Dynamic simulation results and experiments with manufactured platform will also be presented to validate the analysis. Several types of wheel materials and structures will be compared to determine the best anti-shock wheel design through FEM (Finite Element Method) simulations.

GPS Jamming Resilient Location-based Routing for Unmanned Ground Vehicle Networks (무인 지상 차량 네트워크에서 GPS 재밍에 강인한 위치기반 라우팅)

  • Lee, Jinwoo;Jung, Woo-Sung;Kim, Yong-joo;Ko, Young-Bae;Ham, Jae-Hyun;Choi, Jeung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.432-440
    • /
    • 2015
  • UGVs(Unmanned Ground Vehicles) are robots that can substitute humans in reconnaissance operations of potentially dangerous and contaminated sites. Currently, there have been active research on utilizing UGVs in military environments. Much resrach has been focused on exploiting the weakness of topology-based routing and instead utilize location-based routing for the networking of UGVs. It is generally assumed that location-based routing methods can fully utilize the location information gained from GPS. However, this may not be possible in tactical environments due to enemy GPS jamming and LOS(Line of Sight) limitations. To solve this problem, we propose a location-based routing scheme utilizing low control message that can calibrate the location information using GPS information as well as location of neighboring UGV, movement direct and speed information. Also utilizing topology-based routing scheme to solve incorrect location information in GPS jamming region.

Study on Delivery of Military Drones and Transport UGVs with Time Constraints Using Hybrid Genetic Algorithms (하이브리드 유전 알고리즘을 이용한 시간제약이 있는 군수 드론 및 수송 UGV 혼합배송 문제 연구)

  • Lee, Jeonghun;Kim, Suhwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.425-433
    • /
    • 2022
  • This paper studies the method of delivering munitions using both drones and UGVs that are developing along with the 4th Industrial Revolution. While drones are more mobile than UGVs, their loading capacity is small, and UGVs have relatively less mobility than drones, but their loading capacity is better. Therefore, by simultaneously operating these two delivery means, each other's shortcomings may be compensated. In addition, on actual battlefields, time constraints are an important factor in delivering munitions. Therefore, assuming an actual battlefield environment with a time limit, we establish delivery routes that minimize delivery time by operating both drones and UGVs with different capacities and speeds. If the delivery is not completed within the time limit, penalties are imposed. We devised the hybrid genetic algorithm to find solutions to the proposed model, and as results of the experiment, we showed the algorithm we presented solved the actual size problems in a short time.

Strategies for Autonomous MUM-T Defense Industry (자율화 MUM-T 국방산업 전략)

  • Byungwoon Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.56-61
    • /
    • 2023
  • Recently, advancement of AI-enabled autonomous MUM-T combat system and industrial revitalization are rapidly emerging as global issues. However, the Defense Business Act of the Ministry of National Defense in Korea is judged to be somewhat insufficient compared to NATO leading countries in advancement of operation part of a weapon system as MUM-T is centered on a weapon system's own device. We established the concept of AI-enabled autonomous MUM-T to strengthen international competitiveness of complex combat systems such as future global UGV, UAV, and UMS. In addition, NATO and US-centered autonomy, interoperability, and data standardization-based defense AI MUM-T top-level platform construction and operation plan, establishment of a national defense innovation committee such as the National Science and Technology Advisory Council, review and advisory function reinforcement, and additional governance measures are proposed.

Background memory-assisted zero-shot video object segmentation for unmanned aerial and ground vehicles

  • Kimin Yun;Hyung-Il Kim;Kangmin Bae;Jinyoung Moon
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.795-810
    • /
    • 2023
  • Unmanned aerial vehicles (UAV) and ground vehicles (UGV) require advanced video analytics for various tasks, such as moving object detection and segmentation; this has led to increasing demands for these methods. We propose a zero-shot video object segmentation method specifically designed for UAV and UGV applications that focuses on the discovery of moving objects in challenging scenarios. This method employs a background memory model that enables training from sparse annotations along the time axis, utilizing temporal modeling of the background to detect moving objects effectively. The proposed method addresses the limitations of the existing state-of-the-art methods for detecting salient objects within images, regardless of their movements. In particular, our method achieved mean J and F values of 82.7 and 81.2 on the DAVIS'16, respectively. We also conducted extensive ablation studies that highlighted the contributions of various input compositions and combinations of datasets used for training. In future developments, we will integrate the proposed method with additional systems, such as tracking and obstacle avoidance functionalities.

Performance Enhancement of Virtual War Field Simulator for Future Autonomous Unmanned System (미래 자율무인체계를 위한 가상 전장 환경 시뮬레이터 성능 개선)

  • Lee, Jun Pyo;Kim, Sang Hee;Park, Jin-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.109-119
    • /
    • 2013
  • An unmanned ground vehicle(UGV) today plays a significant role in both civilian and military areas. Predominantly these systems are used to replace humans in hazardous situations. To take unmanned ground vehicles systems to the next level and increase their capabilities and the range of missions they are able to perform in the combat field, new technologies are needed in the area of command and control. For this reason, we present war field simulator based on information fusion technology to efficiently control UGV. In this paper, we present the war field simulator which is made of critical components, that is, simulation controller, virtual image viewer, and remote control device to efficiently control UGV in the future combat fields. In our information fusion technology, improved methods of target detection, recognition, and location are proposed. In addition, time reduction method of target detection is also proposed. In the consequence of the operation test, we expect that our war field simulator based on information fusion technology plays an important role in the future military operation significantly.

Collision Avoidance for Indoor Mobile Robotics using Stereo Vision Sensor (스테레오 비전 센서를 이용한 실내 모바일 로봇 충돌 회피)

  • Kwon, Ki-Hyeon;Nam, Si-Byung;Lee, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2400-2405
    • /
    • 2013
  • We detect the obstacle for the UGV(unmanned ground vehicle) from the compound image which is generated by stereo vision sensor masking the depth image and color image. Stereo vision sensor can gathers the distance information by stereo camera. The obstacle information from the depth compound image can be send to mobile robot and the robot can localize the indoor area. And, we test the performance of the mobile robot in terms of distance between the obstacle and the robot's position and also test the color, depth and compound image respectively. Moreover, we test the performance in terms of number of frame per second which is processed by operating machine. From the result, compound image shows the improved performance in distance and number of frames.

A Method of Generating Trafficability Analysis Map for UGV Navigation (지상무인로봇의 경로계획을 위한 가동맵 생성 방법)

  • Chang, Hye Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.79-85
    • /
    • 2014
  • For the successful operation of unmanned ground vehicles(UGVs), optimal path planning should be considered with trafficability analysis, threat analysis, and so on. From among these, trafficability analysis is immensely important for safeness of UGVs especially in the case of driving the off-road such as unpaved road, grassland, and open fields. Geographical information has a pivotal role in extracting data and measuring cost for specified regions of interest. In this paper, we review possibilities to apply Land Cover Map(LCM) as a new, fundamental source and propose a new generation method of trafficability analysis map for optimal path planning of UGV. The simulation results show that the proposed method significantly improve the previous method by applying LCM either alone or in combination with the other GIS.