• Title/Summary/Keyword: ubiquitous healthcare

Search Result 293, Processing Time 0.025 seconds

A wireless sensor network approach to enable location awareness in ubiquitous healthcare applications

  • Singh, Vinay Kumar;Lim, Hyo-Taek;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.277-285
    • /
    • 2007
  • In this paper, we outline the research issues that we are pursuing towards building of location aware environments for mainly ubiquitous healthcare applications. Such location aware application can provide what is happening in this space. To locate an object, such as patient or elderly person, the active ceiling-mounted reference beacons were placed throughout the building. Reference beacons periodically publish location information on RF and ultrasonic signals to allow application running on mobile or static nodes to study and determine their physical location. Once object-carried passive listener receives the information, it subsequently determines it's location from reference beacons. The cost of the system was reduced while the accuracy in our experiments was fairly good and fine grained between 7 and 12 cm for location awareness in indoor environments by using only the sensor nodes and wireless sensor network technology. Passive architecture used here provides the security of the user privacy while at the server the privacy was secured by providing the authentication using Geopriv approach. This information from sensor nodes is further forwarded to base station where further computation is performed to determine the current position of object.

Patch Type Body Temperature Measurement System for Ubiquitous Healthcare (U-헬스케어를 위한 패치형 체온 측정 시스템)

  • Kim, Hyun-Joong;Yang, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1628-1634
    • /
    • 2011
  • With the advancement of ubiquitous computing technology, u-Healthcare (i.e. ubiquitous health care), is regarded as a key application for information society, which provides health management service at anytime in anywhere. To implement U-Healthcare system, it is essential to monitor stable biological information in daily life. In this paper, we proposed a small size, light weight, patch type real time temperature monitoring system based on wireless sensor network (WSN) technology to monitor patients' body temperature without any inconvenience of activity.

An u-healthcare system using an wireless sensor node with ECG analysis function by QRS-complex detection (QRS검출에 의한 ECG분석 기능을 갖춘 무선센서노드를 활용한 u-헬스케어 시스템)

  • Lee, Dae-Seok;Bhardwaj, Sachin;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.361-368
    • /
    • 2007
  • Small size real-time ECG signal analysis function by QRS-complex detection was put into sensor nodes. Wireless sensor nodes attached on the patient’s body transmit ECG data continuously in normal u-healthcare system. So there are heavy communication traffics between sensor nodes and gateways. New developed platform for real-time analysis of ECG signals on sensor node can be used as an advanced diagnosis and alarming system for healthcare. Sensor node does not need to transmit ECG data all the time in wireless sensor network and to server PC via gateway. When sensor node detects suspicion or abnormality in ECG, then the ECG data in the network was transmitted to the server PC for further powerful analysis. This system can reduce data packet overload and save some power in wireless sensor network. It can also increase the server performance.

Ubiquitous Healthcare Monitoring System based on Web 2.0 (웹 2.0 기반의 유비쿼터스 헬스케어 모니터링 시스템)

  • Jeong, Pil-Seong;Oh, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4C
    • /
    • pp.321-328
    • /
    • 2012
  • The Mobile device like smart phone is a small computing device and easy to carry around. The Mobile devices are wildly being used as desktop personal computer and can served individual services. Because of compatibility of applications working on mobile devices are not good, so developer need to develop it that match changes in platform fetures. In this paper, we design and implementate ubiquitous healthcare monitoring system that can be runs on many different platforms using HTML5 as a standard web development language and jQuery as a javascript library. Ubiquitous healthcare monitoring system is runs on on many different platforms like mobile platforms and desktop web browsers.

Design of an Efficient Electrocardiogram Measurement System based on Bluetooth Network using Sensor Network (Bluetooth기반의 센서네트워크를 이용한 효율적인 심전도 측정시스템 설계)

  • Kim, Sun-Jae;Oh, Won-Wook;Lee, Chang-Soo;Min, Byoung-Muk;Oh, Hae-Seok
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.699-706
    • /
    • 2009
  • The convergence tendency accelerates the realization of the ubiquitous healthcare (u-Healthcare) between the technology including the power generaation and IT-BT-NT of the ubiquitous computing technology. By rapidly analyzing a large amount of collected from the sensor network with processing and delivering to the medical team an u-Healthcare can provide a patient for an inappropriate regardless of the time and place. As to the existing u-Healthcare, since the sensor node all transmitted collected data by using with the Zigbee protocol the processing burden of the base node was big and there was many communication frequency of the sensor node. In this paper, the u-Healthcare system in which it can efficiently apply to mobile apparatuses it provided the transfer rate in which it is superior to the bio-signal delivery where there are the life and direct relation which by using the Bluetooth instead of the Zigbee protocol and in which it is variously used in the ubiquitous environment was designed. Moreover, by applying the EEF(Embedded Event Filtering) technique in which data in which it includes in the event defined in advance selected and it transmits with the base node, the communication frequency and were reduced. We confirmed to be the system in which it is efficient through the simulation result than the existing Electrocardiogram Measurement system.

Development of an Ubiquitous Healthcare System based on Health Information Exchange Standards (건강정보 교환 표준에 기반한 유비쿼터스 헬스케어 시스템 개발)

  • Lee, In-Keun;Kim, Hwa-Sun;Cho, Hune
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.273-280
    • /
    • 2012
  • As changed the clinical environment, the interest on u-Healthcare service and systems has been increased. The ubiquitous healthcare(u-Healthcare) systems are constructed at the integrated environment that consists of various devices and systems basically such as personal health devices(PHDs) measuring body signals, information aggregators gathering the data transmitted from PHDs through wireless technology, and health information systems storing and managing personal health information transmitted from the information aggregators. International standards such as IEEE 11073 and HL7 have been specified for the interoperability of PHDs and health information systems, but the research on u-Healthcare systems that were developed and applied in the real clinical environment by adopting the standards was rarely conducted. Therefore, we developed an u-Healthcare system which can manage personal health information, such as blood glucose, blood pressure, and body composition, based on health information exchange standards. Moreover, we verified the stability of the developed system through clinical trial in patients with endocrine disease at the Kyungpook National University Hospital, and listed problems occurred during clinical trial and found their solutions.

An ECG Monitoring and Analysis Method for Ubiquitous Healthcare System in WSN

  • Bhardwaj, Sachin;Lee, Dae-Seok;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • The aim of this paper is to design and implement a new ECG signal monitoring and analysis method for the home care of elderly persons or patients, using wireless sensor network (WSN) technology. The wireless technology for home-care purpose gives new possibilities for monitoring of vital parameter with wearable biomedical sensors and will give the patient freedom to be mobile and still be under continuously monitoring. Developed platform for portable real-time analysis of ECG signals can be used as an advanced diagnosis and alarming system. The ECG features are used to detect life-threatening arrhythmias, with an emphasis on the software for analyzing the P-wave, QRS complex, and T-wave in ECG signals at server after receiving data from base station. Based on abnormal ECG activity, the server transfer diagnostic results and alarm conditions to a doctor's PDA. Doctor can diagnose the patients who have survived from arrhythmia diseases.

The Implementation of Bio-signal Measuring System Based on Mobile Terminal (모바일 단말기 기반의 생체신호 측정 시스템 구현)

  • Oh, Seong-Jun;Kim, Woong-Sik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.1-10
    • /
    • 2008
  • Health medical service is passes with u-Healthcare and it promote health medical service environment change to the citizen center in the hospital center, and all methods of diagnosis, treatment, after management are forecasted in prevention because a balance develops. It is necessary for an u-Healthcare terminal is devoted to becoming an ubiquitous terminal of consciousness when in where and the following technology to result in implementation. Information communication equipment and an appliance technical data transfer technology Precision and how mobile gateway implementation, Bluetooth wireless appliance function is various with mobile communication and radio communication network and an appliance function are necessary. therefore, in this paper, we did a study on the implementation of bio signal measuring system for the u-healthcare based on mobile.

Sensor Network-based u-Healthcare System (센서네트워크 기반 u-Healthcare 시스템)

  • Back, Yun-Suk;Lee, Bong-Hwan;Bang, Min-Young;Hwang, In-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.312-315
    • /
    • 2008
  • Recently, owing to the development of ubiquitous, RFID and local area wireless communication technology, many studies on the system which can measure biomedical signals are being carried out. In this paper, we have designed and implemented an u-Healthcare system based on sensor network using biomedical signal measurement sensors such as ECG, blood pressure, and heartbeats. The biomedical signals from sensor nodes pass through the gateway and are finally transmitted to a healthcare renter. The acquired biomedical signals are processed in the healthcare center and the analyzed results are transmitted to the patients to improve patients' health using either kinesitherapy or dietary treatment.

  • PDF

A Robust Wearable u-Healthcare Platform in Wireless Sensor Network

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.465-474
    • /
    • 2014
  • Wireless sensor network (WSN) is considered to be one of the most important research fields for ubiquitous healthcare (u-healthcare) applications. Healthcare systems combined with WSNs have only been introduced by several pioneering researchers. However, most researchers collect physiological data from medical nodes located at static locations and transmit them within a limited communication range between a base station and the medical nodes. In these healthcare systems, the network link can be easily broken owing to the movement of the object nodes. To overcome this issue, in this study, the fast link exchange minimum cost forwarding (FLE-MCF) routing protocol is proposed. This protocol allows real-time multi-hop communication in a healthcare system based on WSN. The protocol is designed for a multi-hop sensor network to rapidly restore the network link when it is broken. The performance of the proposed FLE-MCF protocol is compared with that of a modified minimum cost forwarding (MMCF) protocol. The FLE-MCF protocol shows a good packet delivery rate from/to a fast moving object in a WSN. The designed wearable platform utilizes an adaptive linear prediction filter to reduce the motion artifacts in the original electrocardiogram (ECG) signal. Two filter algorithms used for baseline drift removal are evaluated to check whether real-time execution is possible on our wearable platform. The experiment results shows that the ECG signal filtered by adaptive linear prediction filter recovers from the distorted ECG signal efficiently.