• Title/Summary/Keyword: ubiquitin

Search Result 349, Processing Time 0.032 seconds

Recombinant Expression, Isotope Labeling and Purification of the Vitamin D Receptor Binding Peptide

  • Chae, Young-Kee;Singarapu, Kiran;Westler, W. Milo;Markley, John L.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4337-4340
    • /
    • 2011
  • The vitamin D receptor binding peptide, VDRBP, was overexpressed as a fused form with the ubiquitin molecule in Rosetta(DE3)pLysS, a protein production strain of Escherichia coli harboring an induction controller plasmid. The fusion protein was bound to the immobilized metal ions, and the denaturation and renaturation of the fusion protein were performed as a part of the purification procedure. After the elution of the fusion protein, the peptide hormone was released from its fusion partner by using yeast ubiquitin hydrolase (YUH), and subsequently purified by reverse phase chromatography. The purity of the resulting peptide fragment was checked by MALDI-TOF mass and NMR spectroscopy. The final yields of the target peptide were around 5 and 2 mg per liter of LB and minimal media, respectively. The recombinant expression and purification of this peptide will enable structural and functional studies using multidimensional NMR spectroscopy and X-ray crystallography.

Characterization of the Nucleotide Sequence of a Polyubiquitin Gene (PUBC1) from Arabian Camel, Camelus dromedarius

  • Al-Khedhairy, Abdulaziz Ali A.
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.144-147
    • /
    • 2004
  • Molecular amplification and sequencing of genomic DNA that encodes camel polyubiquitin (PUBC1) was performed by a polymerase chain reaction (PCR) using various sets of primers. The amplification generated a number of DNA fragments, which were sequenced and compared with the polyubiquitin coding sequences of various species. One DNA fragment that conformed to 325 bp was found to be 95 and 88% homologous to the sequences of human polyubiquitin B and C, respectively. The DNA translated into 108 amino acids that corresponded to two fused units of ubiquitin with no intervening sequence, which indicates that it is a polyubiquitin and contains at least two units of ubiquitin. Although, variations were found in the nucleotide sequence when compared to those of other species, the amino acid sequence was 100% homologous to the polyubiquitin sequences of humans, mice, and rats. This is the first report of the polyubiquitin DNA coding sequence and its corresponding amino acid sequence from camels, amplified using direct genomic DNA preparations.

Critical Roles of Deubiquitinating Enzymes in the Nervous System and Neurodegenerative Disorders

  • Das, Soumyadip;Ramakrishna, Suresh;Kim, Kye-Seong
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.203-214
    • /
    • 2020
  • Post-translational modifications play major roles in the stability, function, and localization of target proteins involved in the nervous system. The ubiquitin-proteasome pathway uses small ubiquitin molecules to degrade neuronal proteins. Deubiquitinating enzymes (DUBs) reverse this degradation and thereby control neuronal cell fate, synaptic plasticity, axonal growth, and proper function of the nervous system. Moreover, mutations or downregulation of certain DUBs have been found in several neurodegenerative diseases, as well as gliomas and neuroblastomas. Based on emerging findings, DUBs represent an important target for therapeutic intervention in various neurological disorders. Here, we summarize advances in our understanding of the roles of DUBs related to neurobiology.

Exploiting the Fanconi Anemia Pathway for Targeted Anti-Cancer Therapy

  • Jo, Ukhyun;Kim, Hyungjin
    • Molecules and Cells
    • /
    • v.38 no.8
    • /
    • pp.669-676
    • /
    • 2015
  • Genome instability, primarily caused by faulty DNA repair mechanisms, drives tumorigenesis. Therapeutic interventions that exploit deregulated DNA repair in cancer have made considerable progress by targeting tumor-specific alterations of DNA repair factors, which either induces synthetic lethality or augments the efficacy of conventional chemotherapy and radiotherapy. The study of Fanconianemia (FA), a rare inherited blood disorder and cancer predisposition syndrome, has been instrumental in understanding the extent to which DNA repair defects contribute to tumorigenesis. The FA pathway functions to resolve blocked replication forks in response to DNA interstrand cross-links (ICLs), and accumulating knowledge of its activation by the ubiquitin-mediated signaling pathway has provided promising therapeutic opportunities for cancer treatment. Here, we discuss recent advances in our understanding of FA pathway regulation and its potential application for designing tailored therapeutics that take advantage of deregulated DNA ICL repair in cancer.

Polyubiquitin-Proteasomal Degradation of Leucine-Rich Repeat Kinase 2 Wildtype and G2019S

  • Park, Sangwook
    • Biomedical Science Letters
    • /
    • v.27 no.3
    • /
    • pp.182-186
    • /
    • 2021
  • Parkinson disease (PD) is becoming one of the most neurodegenerative disorder worldwide. The deposited aggregates have been connected in the pathophysiology of PD, which are degraded either by ubiquitin-proteasomal system (UPS) or autophagy-lysosomal pathway (ALP). Leucin-rich repeat kinase 2 (LRRK2), one of the neurodegenerative proteins of PD is also stringently controlled by both UPS and ALP degradation as well. However, the polyubiquitination pattern of LRRK2 aggregates is largely unknown. Here, we found that K63-linked polyubiquitinations of G2019S mutant, most familial variant for PD, is highly enhanced compared to those of wild type LRRK2 (WT). In addition, in the presence of overexpressed p62/SQSTM-1, ubiquitination of LRRK2 WT or D1994A was reduced, whereas G2019S mutant was not diminished significantly. Therefore, we propose that degradation of G2019S via UPS is more involved with K63-linked ubiquitination than K48-linked ubiquitination, and overexpressed p62/SQSTM-1 does not enhance degradative effect on G2019S variant.

Crystal Structure of p97-N/D1 Hexamer Complexed with FAF1 UBX Domain

  • Wonchull Kang
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.5
    • /
    • pp.348-352
    • /
    • 2023
  • p97, a universally conserved AAA+ ATPase, holds a central position in the ubiquitin-proteasome system, orchestrating myriad cellular activities with significant therapeutic implications. This protein primarily interacts with a diverse set of adaptor proteins through its N-terminal domain (NTD), which is structurally located at the periphery of the D1 hexamer ring. While there have been numerous structural elucidations of p97 complexed with adaptor proteins, the stoichiometry has remained elusive. In this work, we present the crystal structure of the p97-N/D1 hexamer bound to the FAF1-UBX domain at a resolution of 3.1 Å. Our findings reveal a 6:6 stoichiometry between the p97 hexamer and FAF1-UBX domain, deepening our understanding from preceding structural studies related to p97-NTD and UBX domain-containing proteins. These insights lay the groundwork for potential therapeutic interventions addressing cancer and neurodegenerative diseases.

RNF43 and ZNRF3 in Wnt Signaling - A Master Regulator at the Membrane

  • Fiona Farnhammer;Gabriele Colozza;Jihoon Kim
    • International Journal of Stem Cells
    • /
    • v.16 no.4
    • /
    • pp.376-384
    • /
    • 2023
  • The Wnt 𝛽-catenin signaling pathway is a highly conserved mechanism that plays a critical role from embryonic development and adult stem cell homeostasis. However, dysregulation of the Wnt pathway has been implicated in various diseases, including cancer. Therefore, multiple layers of regulatory mechanisms tightly control the activation and suppression of the Wnt signal. The E3 ubiquitin ligases RNF43 and ZNRF3, which are known negative regulators of the Wnt pathway, are critical component of Wnt signaling regulation. These E3 ubiquitin ligases control Wnt signaling by targeting the Wnt receptor Frizzled to induce ubiquitination-mediated endo-lysosomal degradation, thus controlling the activation of the Wnt signaling pathway. We also discuss the regulatory mechanisms, interactors, and evolution of RNF43 and ZNRF3. This review article summarizes recent findings on RNF43 and ZNRF3 and their potential implications for the development of therapeutic strategies to target the Wnt signaling pathway in various diseases, including cancer.