• Title/Summary/Keyword: tyrosine kinase substrate

Search Result 20, Processing Time 0.032 seconds

Monoclonal Antibody Recognizing Nervous System Specific Protein of Drosophila melanogaster (초파리 신경계특이적인 단일클론항체의 제작과 그 항원의 국재)

  • 윤춘식
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.571-575
    • /
    • 1998
  • The nerve system specific protein of Drosophila melanogaster was produced by using heads of flies as the antigen. The monoclonal antibody 6H6 recognized the disabled molecules that a kind of tyrosine kinase substrate by expres-sion cDNA library screening method. At the same time, the antibody also specifically recognized C-terminal region of disabled protein from 7427 to 8761bp by DNA sequencing. In early embryos, the localization of antigen appeared in the central nerve system. In adult flies, the antigen showed specific localization on the axon of optic nerve, cerebral nerve and thoracic nerve, and they also expressed on the muscular nerve. The molecules of disabled are expected to carry an important function in developing central nerve system. In adult flies, it is suggested that the disabled molecules have a role for muscular nerve as well as neural axon.

  • PDF

The Human PTK6 Interacts with a 23-kDa Tyrosine-Phosphorylated Protein and is localized in Cytoplasm in Breast Carcinoma T-47D Cells

  • Bae, Joon-Seol;Lee, Seung-Thek
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • The human PTK6 (also known as Brk) polypeptide, which is deduced from its full-length cDNA, represents a non-receptor protein tyrosine kinase (PTK). It contains SH3, SH2, and tyrosine kinase catalytic domains that are closely related to Src family members. We generated an antihuman PTK6 antibody by immunizing rabbits with a PTK6-specific oligopeptide conjugated to BSA, which corresponds to 11 amino acid residues near the C-terminus. An immunoblot analysis with the antibody detected an expected 52-kDa band in various mammalian transformed cell lines. Immunoprecipitation and immunoblot analyses demonstrated that PTK6 is phosphorylated on the tyrosine residues) and interacts with approximately a 23-kDa tyrosine-phosphorylated polypeptide (most likely a substrate of PTK6) in breast carcinoma T-47D cells. An immunofluorescence analysis demonstrated that PTK6 is localized throughout the cytoplasm of T-47D cells. These results support a possible role for PTK6 in the intracellular signal transduction through tyrosine phosphorylation.

  • PDF

Lupeol Improves TNF-α Induced Insulin Resistance by Downregulating the Serine Phosphorylation of Insulin Receptor Substrate 1 in 3T3-L1 Adipocytes (3T3-L1 지방세포에서 루페올의 IRS-1의 인산화 조절을 통한 TNF-α 유도 인슐린 저항성 개선 효과)

  • Hyun Ah Lee;Ji Sook Han
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.859-867
    • /
    • 2023
  • Lupeol is a type of pentacyclic triterpene that has been reported to have therapeutic effects for treating many diseases; however, its effect on insulin resistance is unclear clear. This study examined the inhibitory effect of lupeol on the serine phosphorylation of insulin receptor substrate-1 in insulin resistance-induced 3T3-L1 adipocytes. 3T3-L1 cells were cultured and treated with tumor necrosis factor-α (TNF-α) for 24 hours to induce insulin resistance. Cells treated with different concentrations of lupeol (15 μM or 30 μM) or 100 nM of rosiglitazone were incubated. Then, lysed cells underwent western blotting. Lupeol exhibited a positive effect on the negative regulator of insulin signaling and inflammation-activated protein kinase caused by TNF-α in adipocytes. Lupeol inhibited the activation of protein tyrosine phosphatase-1B (PTP-1B)-a negative regulator of insulin signaling-and c-Jun N-terminal kinase (JNK); it was also an inhibitor of nuclear factor kappa-B kinase (IKK) and inflammation-activated protein kinases. In addition, Lupeol downregulated serine phosphorylation and upregulated tyrosine phosphorylation in insulin receptor substrate-1. Then, the downregulated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway was activated, the translocation of glucose transporter type 4 was stimulated to the cell membrane, and intracellular glucose uptake increased in the insulin resistance-induced 3T3-L1 adipocytes. Lupeol may improve TNF-α-induced insulin resistance by downregulating the serine phosphorylation of insulin receptor substrate 1 by inhibiting negative regulators of insulin signaling and inflammation-activated protein kinases in 3T3-L1 adipocytes.

Insulin Cannot Activate Extracellular-signal-related Kinase Due to Inability to Generate Reactive Oxygen Species in SK-N-BE(2) Human Neuroblastoma Cells

  • Hwang, Jung-Jin;Hur, Kyu Chung
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.280-287
    • /
    • 2005
  • The insulin-mediated Ras/mitogen-activated protein (MAP) kinase cascade was examined in SK-N-BE(2) and PC12 cells, which can and cannot produce reactive oxygen species (ROS), respectively. Tyrosine phosphorylation of the insulin receptor and insulin receptor substrate 1 (IRS-1) was much lower in SK-N-BE(2) cells than in PC12 cells when the cells were treated with insulin. The insulin-mediated interaction of IRS-1 with Grb2 was observed in PC12 but not in SK-N-BE(2) cells. Moreover, the activity of extracellular-signal-related kinase (ERK) was much lower in SK-N-BE(2) than in PC12 cells when the cells were treated with insulin. Application of exogenous $H_2O_2$ caused increased tyrosine phosphorylation and Grb2 binding to IRS-1 in SK-N-BE(2) cells, while exposure to an $H_2O_2$ scavenger (N-acetylcysteine) or to a phophatidylinositol-3 kinase inhibitor (wortmannin), and expression of a dominant negative Rac1, decreased the activation of ERK in insulin-stimulated PC12 cells. These results indicate that the transient increase of ROS is needed to activate ERK in insulin-mediated signaling and that an inability to generate ROS is the reason for the insulin insensitivity of SK-N-BE(2) cells.

Substrate Specificity of the Yeast Protein Tyrosine Phosphatase, PTP1, Overexpressed from an Escherichia coli Expression System

  • Kwon, Mi-Yun;Oh, Min-Su;Han, Jun-Pil;Cho, Hyeong-Jin
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.386-392
    • /
    • 1996
  • A Saccharomyces cerevisiae Protein Tyrosine Phosphatase, PTP1, was expressed from an Escherichia coli expression system and milligram quantities of active PTP1 were purified chromatographically. The substrate specificity of the recombinant PTP1 was probed using synthetic phosphotyrosine-containing peptides corresponding to the regulatory phosphorylation sites of the yeast MAP kinase homologues $Fus3_{176-186}$, $Kss1_{179-189}$, and $Hog1_{170-180}$. Peptide sequences derived from the MAP kinase homologues were chosen arbitrarily as starting points for sequence variation studies even though they are not likely to be candidates for physiological substrates of PTP1. Phosphotyrosyl-$Hog1_{170-180}$ peptide showed a $K_M$ value of 877 ${\mu}M$ and phosphorylated $Kss1_{179-189}$ and $Fus3_{176-186}$ peptides showed lower $K_M$ values of 74 ${\mu}M$ and 51 ${\mu}M$ each. To study the effect of sequence variations of the peptide, amino acids of the undecapeptide $Hog1_{170-180}$ (DPQMTGpYVSTR) were sequentially substituted by an alanine residue. More extensive variations of each amino acid revealed positional importance of each amino acid residue. Based on these results, we derived a peptide sequence (DADEpYDA) that is recognized by PTP1 with an affinity ($K_M$ is 4 ${\mu}M$) significantly higher than that of the peptides derived from the phosphorylation sites of Fus3, Kss1, and Hog1.

  • PDF

Salicylate Enhances Insulin Signaling by Preventing Ser731 Phosphorylation of Insulin Receptor Substrate 1 (Insulin Receptor Substrate 1의 세린731 인산화 억제를 통한 살리실산의 인슐린저항성 개선효과 기전)

  • Lee, Yong-Hee
    • YAKHAK HOEJI
    • /
    • v.52 no.3
    • /
    • pp.182-187
    • /
    • 2008
  • Salicylate (SA) was shown to alleviate insulin resistance. Here, we showed that SA inhibited Ser731 phosphorylation of insulin receptor substrate 1 (IRS1) and S6 kinase activation, and enhanced tyrosine phosphorylation of IRS1 in response to insulin or amino acid. Experiments using a cJun N-terminal kinase (JNK)-deficient cell and an IRS1 JNK-binding mutant showed that JNK is not required for Ser731 phosphorylation. A two-week treatment of obese mice with SA resulted in decreased Ser731 phosphorylation and enhanced insulin signaling. These results suggest that SA enhances insulin signaling by inhibiting Ser731 phosphorylation of IRS1.

Purification and Characterization of Mitogen -Activated Protein (MAP) Kinase from Mammalian Tissue Cells (동물 조직세포로부터 Mitogen-activated Protein (MAP) Kinase의 분리 및 성격규명)

  • 김태우;정동주;김윤석
    • Biomedical Science Letters
    • /
    • v.2 no.1
    • /
    • pp.21-30
    • /
    • 1996
  • MAP kinases are a family of serine/threonine specific protein kinases becoming activated in response to different proliferative stimuli by phosphorylation at both threonine and tyrosine residue. Present study shows that MAP kinase was purified from P388 murine leukema cells by SP sephadex C-50, phenyl superose and Mono Q column chromatography and identified with anti-ERKl antibody by western blotting. Immnublotting analysis to the crude extract of P388 cell lysate shows 44 kD and other minor bands but partial purified fraction eluted from phenyl supherose column have 44kD and 66 kD isoform. Subcloned GST-fusion protein from N-terminal of $p56^{kk}$ was tested as a substrate for MAP kinase phosphorylation. It was showed that the wild type and mutant forms(S42A) were fully phosporylated by purified MAP kinase fraction as com-pare with the other mutant form(S59A). This finding suggest that those GST-fusion proteins may be used as substrate for the in vitro test of MAP kinase.

  • PDF

Characterization of Protein Kinases Activated during Treatment of Cells with Okadaic Acid

  • Bogoyevitch, Marie A.;Thien, Marilyn;Ng, Dominic C.H.
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.517-525
    • /
    • 2001
  • Six renaturable protein kinases that utilize the myelin basic protein (MBP) as a substrate were activated during prolonged exposure of cardiac myocytes to okadaic acid (OA). We characterized the substrate preference and activation of these kinases, with particular emphasis on 3 novel kinases-MBPK-55, MBPK-62 and MBPK-87. The transcription factors c-Jun, Elk, ATF2, and c-Fos that are used to assess mitogen-activated protein kinase activation were all poor substrates for these three kinases. MAPKAPK2 was also not phosphorylated. In contrast, Histone IIIS was phosphorylated by MBPK-55 and MBPK-62. These protein kinases were activated in cultured cardiac fibroblasts, H9c2 cardiac myoblasts, and Cos cells. High concentrations (0.5 to $1\;{\mu}M$) of OA were essential for the activation of the protein kinases in all of the cell types examined, whereas calyculin A [an inhibitor of protein phosphatase 1 (PP1) and PP2A], cyclosporin A (a PP2B inhibitor), and an inactive OA analog all failed to activate these kinases. The high dose of okadaic acid that is required for kinase activation was also required for phosphatase inhibition, as assessed by immunoblotting whole cell lysates with anti-phosphothreonine antibodies. A variety of chemical inhibitors, including PD98059 (MEK-specific), genistein (tyrosine kinase-specific) and Bisindolylmaleimide I (protein kinase C-specific), failed to inhibit the OA activation of these kinases. Thus, MBPK-55 and MBPK-62 are also Histone IIIS kinases that are widely expressed and specifically activated upon exposure to high OA concentrations.

  • PDF

Studies on the phosphotyrsine-proteins in the rat cerbellar PSD fraction (흰쥐 소뇌 연접후치밀질내 phosphotryrosine 함유 단백질에 대한 연구)

  • 전일수;함소희;고복현
    • Journal of Life Science
    • /
    • v.7 no.3
    • /
    • pp.198-204
    • /
    • 1997
  • The signal transduction through tyrosine kinases play important roles in neuronal development and synaptic regulation. We carried out immunoblot analyses to study tyrosine=phosphorylated proteins in the rat cerebellar postsynaptic density (PSD), a protein-rich cytoskeletal specialization underlying beneath the postsynaptic membrane. The overall protein composition of cerebellar PSD fractions was similar to that of the forebrain’s and only a few bands were different in Coomassie stain. Immunoblot analyses with phosphtyrosine-specific antiboy (4G10) showed that there are many more tyrosine-phosphorylated proteins in the cerebellar PSD than in the forebrain PSD. Interestiingly, a major phosphotyrosine signals in cerebellar PSD fractions was associated with a 50 kD molecular size, named as PSD-50. Migration of PSD-50 coincided with that of $\alpha$CaMKII and remained in the pellet fraction after N-octylglucoside extraction. These results indicate that tyrosine phosphorylation is important in cerebellar synaptic regulation and that the PSD-50 may be same as $\alpha$CaMKIIor a new protein which is a major substrate of tyrosine kinase.

  • PDF

Culture Conditions for Mycelial Growth and Anti-Cancer Properties of Termitomyces

  • Suphachai Tharavecharak;Corina N. D'Alessandro-Gabazza;Masaaki Toda;Taro Yasuma;Taku Tsuyama;Ichiro Kamei;Esteban C. Gabazza
    • Mycobiology
    • /
    • v.51 no.2
    • /
    • pp.94-108
    • /
    • 2023
  • Termitomyces sp. that grow in symbiosis with fungus-farming Termites have medicinal properties. However, they are rare in nature, and their artificial culture is challenging. The expression of AXL receptor tyrosine kinase and immune checkpoint molecules favor the growth of cancer cells. The study evaluated the optimal conditions for the artificial culture of Termitomyces and their inhibitory activity on AXL and immune checkpoint molecules in lung adenocarcinoma and melanoma cell lines. The culture of 45 strains of Termitomyces was compared. Five strains with marked growth rates were selected. Four of the selected strains form a single cluster by sequence analysis. The mycelium of 4 selected strains produces more fungal mass in potato dextrose broth than in a mixed media. The bark was the most appropriate solid substrate for Termitomyces mycelia culture. The mycelium of all five selected strains showed a higher growth rate under normal CO2 conditions. The culture broth, methanol, and ethyl acetate of one selected strain (T-120) inhibited the mRNA relative expression of AXL receptor tyrosine kinase and immune checkpoint molecules in cancer cell lines. Overall, these results suggest the potential usefulness of Termitomyces extracts as a coadjuvant therapy in malignant diseases.