• Title/Summary/Keyword: tyrosinase gene

Search Result 75, Processing Time 0.03 seconds

Inhibitory Effect of Soyosangagamhwajae on Melanin Synthesis and its Action Mechanism in B16F10 Mouse Melanoma Cell (소요산가감화제(逍遙散加減化製)의 멜라닌 생성 억제와 작용기전에 관한 연구)

  • Kim, Eun-Seop;Lim, Hyun-Jung;Shin, Sun-Mi;Kim, Soo-Min;Lee, Jung-Eun;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.1
    • /
    • pp.83-98
    • /
    • 2008
  • Purpose: This study was performed to determine the inhibitory effect of Soyosangagamhwajae(SYG) on melanin synthesis in B16F10 mouse melanoma cell. Methods: The Inhibitory effects of Soyosangagamhwajae(SYG) on melanin synthesis were determined by in-vitro assay. To elucidate inhibitory effects of SYG on melanin synthesis, we determined the melanin release in B16F10 cell. And to investigate the action mechanism, we assessed the gene expression of tyrosinase, TRP-1, TRP-2. PKA, $PKC{\beta}$ in B16F10 cell. Results: 1. SYG significantly inhibited melanin-release in B16F10 cell. 2. SYG significantly inhibited mushroom tyrosinase activity in vitro. 3. SYG significantly suppressed the expression of tyrosinase in B16F10 cell. 4. SYG significantly suppressed the expression of TRP-1, TRP-2 in B16F10 cell. 5. SYG significantly suppressed the expression of PKA, $PKC{\beta}$ in B16F10 cell. Conclusion: From these results, it may be concluded that SYG has the antimelanogenetic effect.

  • PDF

The effects of green tea (Camellia sinensis) flower extract on melanin synthesis in B16-F10 melanoma cells

  • Dissanayake, Chanuri-Yashara;Moon, Hae-Hee;Yang, Kyeong-Mi;Lee, Younjae;Han, Chang-Hoon
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.2
    • /
    • pp.65-72
    • /
    • 2018
  • The present study observed the effects of a green tea (Camellia sinensis) flower extract (GTFE) on melanin synthesis in B16-F10 melanoma cells. GTFE exhibited antioxidant activity on 2,2-diphenyl-1-picrylhydrazyl and inhibited mushroom tyrosinase activity in a dose-dependent manner. Furthermore, GTFE significantly diminished ${\alpha}-melanocyte$ stimulating hormone (${\alpha}-MSH$) stimulated cellular melanin content and tyrosinase activity throughout the concentration range evaluated. Based on RNA sequencing analysis, differential gene expression patterns observed in ${\alpha}-MSH$ stimulated B16-F10 melanoma cells were normalized by the addition of GTFE. In particular, the expression levels of melanoregulin and tyrosinase genes which are key regulating genes in melanin synthesis were up-regulated by 3.5 and 3 fold respectively by ${\alpha}-MSH$, and were normalized to control levels by the addition of GTFE. The results suggest that GTFE inhibits melanin synthesis in ${\alpha}-MSH$ stimulated B16-F10 melanoma cells by normalizing expression of genes that are essential for melanin synthesis. Overall, the results suggest that GTFE could be applied in the development of a whitening agent for the treatment of dermal hyperpigmentation.

Antioxidant and Anti-Melanogenic Activities of Hyssopus officinalis Extracts (히솝 추출물의 항산화 효과 및 멜라닌 생성 저해효과)

  • Shin, Seo Yeon;Kim, Ha Neul;Kang, Se Won;Cho, Hong Suk;Kim, Eun Ji;Park, Sun Hwa;Park, Kyung Mok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.195-201
    • /
    • 2016
  • Hyssopus officinalis is a herbaceous plant of the genus Hyssopus. Due to its properties as an antiseptic, cough reliever and expectorant, it is commonly used as an aromatic herb and medicinal plant. This study was performed to investigate the anti-oxidative and anti-melanogenic properties of Hyssopus officinalis extracts (HE) using in vitro assays and cell culture systems. As a result, HE showed higher DPPH and ABTS radicals scavenging activity in a dose-dependent manner. Also, HE inhibited the prodution of intracellular ROS and melanin contents in B16F10 melanoma cell as well as tyrosinase activity. We also found that HE inhibit mRNA expression of MITF, tyrosinase and TRP-2 gene. These findings suggest that HE may be beneficial for preventing oxidative damage and melanogenesis of skin.

Studies on Anti-Inflammatory and Anti-Melanogenic Effect of Grape Fruit Stem Extract (포도송이가지 추출물의 항염증 및 미백효능에 대한 연구)

  • Choi, Anna;Lee, Hyun-Seo;Kim, Jang Ho;Cho, Byoung Ok;Shin, Jae Young;Jeong, Seung-Il;Jang, Seon Il
    • The Korea Journal of Herbology
    • /
    • v.32 no.3
    • /
    • pp.71-78
    • /
    • 2017
  • Objectives : The various grape extracts derived from grape pulp, seed and skin, containing various types of polyphenols and flavonoids, have been known to have anti-inflammatory, antioxidant and improve cardiovascular condition as well as sun's damaging effects. However, there have been rare reports of various beneficial effects of grape fruit stem extract (GFSE), one of the waste products of grapes. We investigated anti-inflammatory and melanogenesis inhibitory effects of GFSE. Methods : One-hundred gram of grape fruit stem was extracted with 80% ethanol at room temperature for 3 days. After filtration, the ethanol was removed using vacuum evaporator, then lyophilized to obtain the dry extract which was stored at $-20^{\circ}C$ until used. NO levels were measured by using Greiss reagent. Prostaglandin $E_2$ ($PGE_2$) production was measured by ELISA assay. The expression levels of iNOS, COX-2, TRP-1 and TRP-2 were evaluated by western blot analysis. Results : GFSE reduced the level of nitric oxide and prostaglandin $E_2$ ($PGE_2$) production in a dose-dependent manner, compared to control. Expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein were also effectively inhibited by the GFSE. In a tyrosinase inhibitory activity, GFSE significantly reduced the tyrosinase activity and melanin content in a dose dependent manner, compared to control. GFSE also decreased the expression of tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2), known as a melanocyte-specific gene product involved in melanin synthesis. Conclusions : Therefore, these results indicated that GFSE had powerful anti-inflammatory and anti-melanogenic effects.

A Study on the Whitening Effects of Pueraria thomsonii Extract and its Three Tectorigenin Derivatives (분갈화 추출물과 분갈화 유래 Tectorigenin류 3종의 미백 효능에 대한 연구)

  • Ahn, Young Je;Chang, Yun Hee;Lee, So Young;Jin, Mu Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.1
    • /
    • pp.49-56
    • /
    • 2019
  • Pueraria thomsonii Benth. as a medicinal ingredient, has been traditionally used in Chinese medicine to treat fever, acute dysentery, diarrhea, diabetes, and cardiovascular disease. The effects of P. thomsonii flower on skin have not been reported yet. In this study, the whitening effect of P. thomsonii flower was verified using B16F1 melanoma cells and HS68 fibroblasts. P. thomsonii flower extract reduced melanin contents of B16F1 cells in a dose-dependent manner. To identify its active components, we analyzed P. thomsonii flower extract using high performance liquid chromatography (HPLC). As a result, we identified three major isoflavones of tectorigenin, tectoridin, and tectorigenin 7-O-xylosylglucoside. At a non-cytotoxic concentration, the three components also reduced melanin contents of B16F1 cells in a dose-dependent manner. The depigmentation effects were attributed to the reduced gene expression of tyrosinase and microphthalmia-associated transcription factor (MITF). In order to elucidate another depigmentation mechanism, their effects on DKK-1, a fibroblast-derived depigmentation factor, was determined in HS68 cells. As a result, P. thomsonii flower extracts, tectoridin and tectorigenin 7-O-xylosylglucoside, reduced DKK-1 gene expression, while tectorigenin increased DKK-1 gene expression in a dose-dependent manner. These results suggest that tectorigenin can be used as an effective whitening agent that inhibit melanin synthesis in melanocytes and promote the secretion of depigmentation factor from fibroblasts.

The Antioxidant and Skin-whitening Effects of Saccharomyces cerevisiae FT4-4 Isolated from Berries Grown in Sunchang (화장품 소재로서 순창 베리류 유래 Sacchromyces cerevisiae FT4-4의 항산화 활성 및 미백 효과)

  • Seo, Ji won;Ryu, Myeong Seon;Yang, Hee-Jong;Jeong, Su-Ji;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.175-182
    • /
    • 2021
  • Saccharomyces lysate has the well-known function of soothing the skin in various ways: it is an anti-irritant and can treat skin care conditions, such as skin whitening and antioxidative activity. However, data on the safety for use of Saccharomyces lysate in cosmetics and skin care products are still limited. To design a new cosmetic material with antioxidant and skin-whitening effects, 80 yeast strains were isolated from berries grown in Sunchang. Among the isolates, the FT4-4 strain, which exhibited superior biological activities, was selected for further experiments. The FT4-4 strain was identified as Saccharomyces cerevisiae by 18S rRNA gene sequencing analysis. S. cerevisiae FT4-4 showed higher DPPH radical-scavenging (51.41%), superoxide dismutase (62.23%), and tyrosinase inhibition (64.75%) activities. The highest yield of biomass (3.16 g/l) and maximum growth rate of S. cerevisiae FT4-4 were observed within 16 h. Furthermore, the cytotoxicity potential of S. cerevisiae FT4-4 on B16F10 melanoma cells was measured by an MTT assay, and the results indicated that S. cerevisiae FT4-4 had a capacity to inhibit melanin up to 72.02% at an initial 10 mg/ml concentration. These results suggest that S. cerevisiae FT4-4 could be a promising candidate as a multi-functional material for application in the cosmetic industry, especially because of its antioxidant and skin-whitening effects.

Regulation of melanocyte apoptosis by Stathmin 1 expression

  • Zhang, Yan;Xiong, Jianjun;Wang, Jiali;Shi, Xianping;Bao, Guodong;Zhang, Yang;Zhu, Zhenyu
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.765-770
    • /
    • 2008
  • Undesirable hyperpigmentation that can arise from increased melanocyte activity may be alleviated by targeting active melanocytes for apoptosis. The role of Stathmin 1 as an important regulator of microtubule dynamics is well documented. The current study examined the potential of Stathmin 1-targeting strategies in eliminating active melanocytes. A vector to overexpress Stathmin 1 and vectors to express three distinct small hairpin RNAs to knockdown Stathmin 1 expression in normal melanocytes were produced and in cell cultures acted accordingly. Both overexpression and knockdown of Stathmin 1 led to a marked increase in melanocyte apoptosis, as indicated by the accumulation of apoptotic cells and increased levels of cleaved caspase-3. Both up- and down-regulation of Stathmin 1 expression inhibited the activity of differentiated melanocytes, as indicated by decreases in both melanin production and tyrosinase activity. Taken together, these results indicate that hyperactive melanocytes can be inhibited by altering Stathmin 1 expression.

Effects of Korean ginseng berry on skin antipigmentation and antiaging via FoxO3a activation

  • Kim, Juewon;Cho, Si Young;Kim, Su Hwan;Cho, Donghyun;Kim, Sunmi;Park, Chan-Woong;Shimizu, Takahiko;Cho, Jae Youl;Seo, Dae Bang;Shin, Song Seok
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.277-283
    • /
    • 2017
  • Background: The ginseng berry has various bioactivities, including antidiabetic, anticancer, antiinflammatory, and antioxidative properties. Moreover, we have revealed that the active antiaging component of the ginseng berry, syringaresinol, has the ability to stimulate longevity via gene activation. Despite the many known beneficial effects of ginseng, its effects on skin aging are poorly understood. In this study, we investigated the effects of ginseng and the ginseng berry on one of the skin aging processes, melanogenesis, and age-related pigment lipofuscin accumulation, to elucidate the mechanism of action with respect to antiaging. Methods: The human melanoma MNT1 cell line was treated with ginseng root extract, ginseng berry extract, or syringaresinol. Then, the cells were analyzed using a melanin assay, and the tyrosinase activity was estimated. The Caenorhabditis elegans wild type N2 strain was used for the life span assay to analyze the antiaging effects of the samples. A lipofuscin fluorescence assay was performed during 10 passages with the syringaresinol treatment. Results: A 7-d treatment with ginseng berry extract reduced melanin accumulation and tyrosinase activity more than ginseng root extract. These results may be due to the active compound of the ginseng berry, syringaresinol. The antimelanogenic activity was strongly coordinated with the activation of the longevity gene foxo3a. Moreover, the ginseng berry extract had more potent antiaging effects, caused a life span extension, and reduced lipofuscin accumulation. Conclusion: Taken together, our results suggest that these antimelanogenic effects and antiaging effects of ginseng berry mediate the activation of antioxidation-FoxO3a signaling.

Tyrosinase and α-Glucosidase Inhibitory Activities and Antioxidant Effects of Extracts from Different Parts of Hypochaeris radicata (서양금혼초 부위별 추출물의 티로신에이즈, α-글루코시다아제 저해활성 및 항산화효과)

  • Ko, Hyun Min;Eom, Tae Kil;Song, Seon Kyung;Jo, Ga Yeong;Kim, Ju Sung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.3
    • /
    • pp.139-145
    • /
    • 2017
  • Background: Invasion of these invasive plants in the ecosystem threatens the habitat of endemic species, reduces biodiversity, and causes a disturbance in the ecological system. Hypochaeris radicata L. (Asteraceae), the most invasive plant in Korea, particularly in Jeju Island, invades farmlands, and autochthonous forests, resulting in the establishment of monocultures and modification of the ecosystem structure. Methods and Results: In this study was, we evaluated the biological activity of 70% ethanolic extracts from different parts of Hypochaeris radicata L. The biological activities of 70% ethanolic extracts of different parts, such as flower, leaf, stem, and root, of H. radicata were investigated. The total polyphenol content was highest in flower extracts ($50.82{\pm}3.16mg{\cdot}QE/g$). In addition, the highest flavonoid content was observed in flower extract ($15.19{\pm}2.03mg{\cdot}QE/g$). The flower extract of H. radicata exhibited stronger DPPH radical-scavenging activities, ABTS radical scavenging activities, and reducing power than the other parts. The flower extract of H. radicata was observed to have the highest tyrosinase and ${\alpha}-glucosidase$ inhibitory activities. Conclusions: The flower extracts of H. radicata exhibited remarkable antioxidant activity as well as tyrosinase and ${\alpha}-glucosidase$ inhibitory effects. These activities might be related to the phenolic compounds present in the H. radicata flower extract.

The effects of Caffeoylserotonin on inhibition of melanogenesis through the downregulation of MITF via the reduction of intracellular cAMP and acceleration of ERK activation in B16 murine melanoma cells

  • Kim, Hye-Eun;Ishihara, Atsushi;Lee, Seong-Gene
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.724-729
    • /
    • 2012
  • In this study, we evaluated the anti-melanogenesis effects of Caffeoylserotonin (CaS) in B16 melanoma cells. Treatment with CaS reduced the melanin content and tyrosinase (TYR) activity in B16 melanoma cells in a dose-dependent manner. CaS inhibited the expression of melanogenesis-related proteins, including microphthalmia-associated transcription factor (MITF), TYR, and tyrosinase-related protein-1 (TRP-1), but not TRP-2. ${\alpha}$-MSH is known to interact with melanocortin 1 receptor (MC1R) thus activating adenylyl cyclase and increasing intracellular cyclic AMP (cAMP) levels. Furthermore, cAMP activates extracellular signal-regulated kinase 2 (ERK2) via phosphorylation, which phosphorylates MITF, thereby targeting the transcription factor to proteasomes for degradation. The CaS reduced intracellular cAMP levels to unstimulated levels and activated ERK phosphorylation within 30 min. The ERK inhibitor PD98059 abrogated the suppressive effect of CaS on ${\alpha}$-MSH-induced melanogenesis. Based on this study, the inhibitory effects of CaS on melanogenesis are derived from the downregulation of MITF signaling via the inhibition of intracellular cAMP levels, as well as acceleration of ERK activation.