• 제목/요약/키워드: typicality, membership

검색결과 5건 처리시간 0.015초

PFCM 클러스터링 기법의 개선 (Improvement of the PFCM(Possibilistic Fuzzy C-Means) Clustering Method)

  • 허경용;최세운;우영운
    • 한국정보통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.177-185
    • /
    • 2009
  • 클러스터링은 주어진 데이터 포인트들을 주어진 개수의 그룹으로 나누는 비지도 학습의 한 방법이다. 클러스터링의 방법 중 하나로 널리 알려진 퍼지 클러스터링은 하나의 포인트가 모든 클러스터에 서로 다른 정도로 소속될 수 있도록 함으로써 하나의 클러스터에만 속할 수 있도록 하는 K-means와 같은 방법에 비해 자연스러운 클러스터 형태의 유추가 가능하고, 잡음에 강한 장점이 있다. 이 논문에서는 기존의 퍼지 클러스터링 방법 중 소속도(membership)와 전형성(typicality)을 동시에 계산해 낼 수 있는 Possibilistic Fuzzy C-Means(PFCM) 방법에 Gath-Geva(CG)의 방법을 적용하여 PFCM을 개선한다. 제안한 방법은 PFCM 장점을 그대로 가지면서도, GG의 거리 척도에 의해 클러스터들 사이의 경계를 강조함으로써 분류 목적에 적합한 소속도를 계산할 수 있으며 전형성은 가우스 형태의 분포에서 생성된 포인트들의 분포 함수를 정확하게 모사함으로써 확률 밀도 추정의 방법으로도 사용될 수 있다. 또한 GG 방법은 Gustafson-Kessel 방법과 달리 클러스터에 포함된 포인트의 개수가 확연히 차이나는 경우에도 정확한 결과를 얻을 수 있다. 이러한 사실들은 실험 결과를 통해 확인할 수 있다.

패턴 인식을 위한 Possibilistic 퍼셉트론 알고리즘 (A Possibilistic Perceptron Algorithm for Pattern Recognition)

  • 김미경;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.303-306
    • /
    • 2001
  • 패턴 인식에서 선형 분류 가능한 경계면을 찾아 패턴을 분류하는 방법 중 가장 기본적인 방법은 퍼셉트론이라고 볼 수 있다. 하지만 선형 분류 불가능한 패턴에 대해서는 유용한 결과를 보여주지 못하였다. 먼저 제안된 퍼지 퍼셉트론은 베타영역 설정에 의해 수렴하지 못하는 특성을 보완하였다. 그러나 패턴의 순수한 전형성을 고려해 주지 못하는 단점이 있다. 이에 Crisp의 선형분류 특성과 퍼지의. 수렴특성을 합성하고자 Possibilistic 퍼셉트론을 제시한다.

  • PDF

선형분류 경계면을 찾기 위한 Possibilistic 퍼셉트론 알고리즘 (A Possibilistic Based Perceptron Algorithm for Finding Linear Decision Boundaries)

  • 김미경;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제12권1호
    • /
    • pp.14-18
    • /
    • 2002
  • 패턴 인식에서 선형분류가능한 경계면을 찾아 패턴을 분류하는 방법 중 가장 기본적인 방법은 퍼셉트론이라고 볼 수 있다. 하지만 선형분류불가능한 패턴에 대해서는 유용한 결과를 보여주지 못하였다. 먼저 제안된 퍼지 퍼셉트론은 베타영역 설정에 의해 수렴하지 못하는 특성을 보완하였다. 그러나 패턴의 순수한 전형성을 고려해 주지 못하는 단점이 있다. 이에 Crisp의 선형분류 특성과 퍼지의 수렴특성을 합성하고자 Possibilistic 퍼셉트론을 제시한다.

Possibilistic Fuzzy C-Means 클러스터링 알고리즘의 확장 (Extension of the Possibilistic Fuzzy C-Means Clustering Algorithm)

  • 허경용;우영운;김광백
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.423-426
    • /
    • 2007
  • 클러스터링은 주어진 데이터 포인트들을 주어진 개수의 그룹으로 나누는 비지도 학습의 한 방법이다. 클러스터링의 방법 중 하나로 널리 알려진 퍼지 클러스터링은 하나의 포인트가 모든 클러스터에 서로 다른 정도로 소속될 수 있도록 함으로써 각 포인트가 하나의 클러스터에만 속할 수 있도록 하는 K-means와 같은 방법에 비해 자연스러운 클러스터 형태의 유추가 가능하고, 잡음에 강한 장점이 있다. 이 논문에서는 기존의 퍼지 클러스터링 방법 중 소속도(membership)와 전형성(typicality)을 동시에 계산해 낼 수 있는 Possibilistic Fuzzy C-Means (PFCM) 방법에 Gath-Geva (GG)의 방법 을 적용하여 PFCM을 확장한다. 제안한 방법은 PFCM의 장점을 그대로 가지면서도, GG의 거리 척도에 의해 클러스터들 사이의 경계를 강조함으로써 분류 목적에 적합한 소속도를 계산할 수 있으며, 전형성은 가우스 형태의 분포에서 생성된 포인트들의 분포 함수를 정확하게 모사함으로써 확률 밀도 추정의 방법으로도 사용될 수 있다. 또한 GG 방법은 Gustafson-Kessel 방법과 달리 클러스터에 포함된 포인트의 개수가 확연히 차이 나는 경우에도 정확한 결과를 얻을 수 있다는 사실을 실험 결과를 통해 확인할 수 있었다.

  • PDF

원격탐사 영상의 감독분류를 위한 개선된 하이브리드 c-Means 군집화 알고리즘 (Improved Algorithm of Hybrid c-Means Clustering for Supervised Classification of Remote Sensing Images)

  • 전영준;김진일
    • 융합신호처리학회논문지
    • /
    • 제8권3호
    • /
    • pp.185-191
    • /
    • 2007
  • 윈격탐사 영상은 파장대에 따라 나누어진 여러 개의 밴드로부터 수집된 다중분광 이미지 데이터이다. 위성영상 분류는 원격탐사 처리 과정에 있어서 가장 중요한 분석 기법으로써 영상을 구성하는 각각의 화소들 중 비슷한 분광 특성을 갖는 것끼리 집단화시켜주는 방법이다. 본 논문에서는 PFCM 알고리즘을 응용한 원격탐사 영상의 패턴분류 방법에 관하여 연구하였다. PFCM 알고리즘은 각 데이터와 특정 클러스터 중심과의 거리에 대한 소속정도를 고려한 FCM 클러스터링 알고리즘과 데이터와 해당 클러스터 중심과의 거리에 의존하여 패턴의 전형성(typicality)을 고려한 PCM 클러스터링 알고리즘을 결합한 방법이다. 본 연구에서는 분류 항목별 학습데이터를 선정한 후 이를 PFCM 알고리즘에 적용하여 감독분류를 수행하였다. Landsat TM과 IKONOS 원격탐사 위성영상을 이용하여 PFCM 알고리즘의 적용성을 검증하였다. PFCM 알고리즘을 이용한 감독분류는 PCM, FCM 분류방법보다 좋은 결과를 보여주었으며, 또한 전통적인 분류방법인 최대우도분류보다도 정확도가 더 높은 결과를 보여주었다.

  • PDF