• Title/Summary/Keyword: types of failure

Search Result 1,410, Processing Time 0.028 seconds

Improvement and Evaluation for Seismic Resistant Capacity of Reinforced Concrete Shear wall with Connection Types and Diagonal Reinforcement (철근콘크리트 전단벽의 접합방식과 대각보강에 따른 내진성능 평가 및 개선)

  • Shin, Jong-Hack;Ha, Gee-Joo;An, Joon-Suk;Ju, Jung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.139-147
    • /
    • 1999
  • Six reinforced concrete shear wall, constructured with fully rigid, slit, and infilled types, were tested under both vertical and cyclic loadings. Experimental programs were carried out to evaluate the seismic performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility, under load reversals. All the specimens were modeled in one-third scale size. Based on the test results, the following conclusions can be made. For the diagonal reinforced slit and infilled shear wall specimens, it was found that the failure mode shows very effective crack control and crushing due to slippage prevention of boundary region and reduction of diagonal tension rathar than the brittle shear and diagonal tension failure. The ductility of specimens designed by the diagonal reinforcement for the slit and infilled shear wall was increased 1.72~1.81 times in comparison with the fully rigid shear wall frame. Maximum horizontal load-carrying capacity of specimens designed by the diagonal reinforcement ratio the slit and infilled shear wall was increased respectively by l.14 times and l.49 times in comparison with the standard fully rigid shear wall frame.

  • PDF

A Study on the Section Design of FRP-Concrete Composite Slabs Considering Failure Behaviors (파괴 거동을 고려한 FRP-콘크리트 합성 바닥판의 단면 설계에 관한 연구)

  • 조근희;김병석;이영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.641-646
    • /
    • 2002
  • FRP-concrete composite slab is consisted of brittle materials and then shows brittle failure mechanism. This study suggests a new design approach that FRP-concrete composite slab leads to ductile failure, and investigates their failure behaviors for two types of section by numerical analysis. Box-type section is higher than I-type section in load capacity to required FRP quantity. Each section was designed so that the strain of FRP plate is 50% to its ultimate strain on initiation of concrete crushing, and it is verified that displacement ductility is more than two. Ductility capacity can be improved by reducing the strain of FRP on initiation of concrete crushing, but as the strain of FRP is reduced load capacity to required FRP quantity is also reduced. Therefore section optimization study is needed considering safety and economical efficiency.

  • PDF

RELIABILITY TEST DESIGN Of REMANUFACTURED STEERING GEAR OIL SEAL

  • Gafurov, Alisher;Jung, Do-Hyun;Song, Hyun-Seok
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.265-270
    • /
    • 2011
  • This paper describes a reliability/durability test of the remanufactured steering gear units. There used to be government restrictions to remanufacture certain types of automotive components regarding safety of passengers. Nevertheless, scientific approach to sustainability and remanufacturing process provided solid evidence of highly beneficial sides of reusing the products. Failure mode analysis of the steering gear unit is performed and main failure is found out. The unit is remanufactured by fixing the failure and its quality is assessed through designing a new sequence of loading events. Oil leakage is witnessed as a possible failure and its volume is measured. Conclusions based on laboratory condition durability test are given at the end.

  • PDF

Estimation of a Bivariate Exponential Distribution with a Location Parameter

  • Hong, Yeon-Ung;Gwon, Yong-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.243-250
    • /
    • 2002
  • This paper considers the problem of estimating parameters of the bivariate exponential distribution with a location parameter for a two-component shared parallel system using component data from system-level life test terminated at the time of the prespecified number of system failure. In the system-level life testing, there are three patterns of failure types ; 1) both component failed 2) both component censored 3) one is failed and the other is censored. In the third case, we assume that the failure time might be known or unknown. The maximum likelihood estimators are obtained for the case of known/unknown failure time when the other component is censored.

  • PDF

A Study on the Strength of Metal-Composite Hybrid Joints (금속-복합재 하이브리드 체결부의 강도 특성 연구)

  • Jung, Jae-Woo;Song, Min-Hwan;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.94-97
    • /
    • 2005
  • The strength of aluminum 7075 and carbon composite hybrid joints was studied for adhesive, bolt, and the adhesive-bolt combined joints. Several hybrid joint specimens were tested to get the failure load and modes for three types of the joints. Adhesive Cytec EA9394S was used for aluminum and carbon bonding. Failure load of the adhesive-bolt combined joint was 94 % of the sum of the failure load of the separately bonded and bolted joints. Hybrid joint also showed more stable failure behavior than the simple adhesive or bolted joint.

  • PDF

Determination of Optimal Replacement Period for A Multicomponent System Consider with Failure Types (고장형태(故障形態)를 고려(考慮)한 다부품장비(多部品裝備)의 최적교환시기(最適交換時期) 결정(決定))

  • Lee, Seung-Jun;Gang, Chang-Uk;Hwang, Ui-Cheol
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 1991
  • In this paper, it is assumed that a system is composed of an essential unit and a nonessential unit. During the running of the system, an essential unit is replaced at periodic replacement time T or at nth failure of essential unit whichever occurs first. Nonessential unit is replaced at its failure and at the replacement of essential unit. This paper derive optimal replacement period which minmises the total expected cost for replacement. The unimodality of totoal maintenance cost function is proved under the assumption that hazard rate of each component is continuous and monotone increasing failure rate(IFR). Based on this condition, it is shown that the optimal replacement period is finite and unique.

  • PDF

Analysis of Periodic Test Policy for a Standby Unit under Three Types of Failures (세 종류의 고장형태를 지닌 대기부품에 대한 주기적 검사정책 분석)

  • Park, Jong-Hun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.45-51
    • /
    • 2012
  • 대기부품은 대기기간 중에 우발적 고장이 발생할 수 있으며(type I failure), 해당상황이 장기간 방치되는 것을 방지하기 위해 주기적인 검사를 하는 것이 일반적이다. 그러나 검사가 대기기간 중 발생한 고장을 확인할 수 있게 하는 반면, 검사를 시작할 때 대기하던 부품에 부하를 가하는 과정에서 고장을 유발할 가능성이 존재하며(type II failure), 검사시간동안 대기부품을 작동시킴으로써 열화에 의한 고장발생(type III failure)의 가능성을 증가시키는 효과도 존재한다. 이에 본 논문은 주기적 검사정책을 갖는 대기부품을 대상으로 세 종류의 고장 가능성을 확률적으로 고려하여 성능분석을 실시하였으며, 성능을 평가하는 척도로 극한가용성을 사용하였다. 특히 type III failure를 고려하는 것은 기존에 연구되지 않은 부분으로 본 논문의 기여점이라 할 수 있겠다. 또한 수치해석을 통해 가용성의 관점에서 전술한 세 가지 유형의 고장특성과 검사주기와의 관계를 파악할 수 있도록 하였으며, 그 결과를 통해 높은 수준의 신뢰성 확보가 목적인 대기시스템의 효율적인 운영을 위한 의사결정시 도움이 될 수 있도록 하였다.

Statistical Life Expectancy Calculation of MV Cables and Application Methods (중전압 전선의 통계적 수명예측 계산과 응용 방법)

  • Chong-Eun, Cho;On-You, Lee;Sang-Bong, Kim;Kang-Sik, Kim
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.61-68
    • /
    • 2022
  • In this paper, the change history of various types of MV (Medium Voltage) cables was investigated. In addition, the statistical life expectancy of each type was calculated by using the operation data and the failure data. For cut-off year, 10 years was applied, and realistically applicable statistical life expectancy was calculated by correcting the cause of failure entered by mistake. The life expectancy of FR-CNCO-W was calculated as 51.2 years, CNCV-W 38.1 years, and CNCV 31.4 years and the overall average is 33.8 years. Currently, the life expectancy of TR CNCV-W is 29.4 years, but it is estimated that the lifespan will be extended if failure data is accumulated. As a result, it is expected that life expectancy results can be applied to Asset Management System (AMS) in the future.

A Comparative Study of Failure Criteria for Magnesium Alloy Sheet under Warm Press Forming Condition (마그네슘 판재 온간 성형의 파단 예측 모델 비교 연구)

  • Kim, H.K.;Kim, J.D.;Heo, Y.M.;Kim, W.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.113-118
    • /
    • 2012
  • Magnesium sheet alloys possess limited plastic formability at room temperature but their formability is substantially improved at elevated temperatures and optimum strain rates. In the present paper, three different types of failure criteria, namely, strain-based, stress-based, and work-based criteria, are compared for their applicability to warm press forming of magnesium sheet alloys. Warm deep-drawing experiments were conducted on AZ31 alloy sheet, and the results were used to assess the strength and weakness of the failure criteria.

Design of composite plate girders under shear loading

  • Shanmugam, N.E.;Baskar, K.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2006
  • Experiments have been carried out on six composite and two plain steel plate girders under shear loading to understand the elastic and inelastic behaviour of such girders. The failure mechanism assumed and used to develop design equations is normally based on the failure patterns observed in the experiments. Therefore, different types of cracks and failure patterns observed in the experiments are reviewed briefly first. Based on the observed failure patterns, a design method to predict the ultimate shear capacity of composite plate girders is proposed in this paper. The values of ultimate shear capacity obtained using the proposed design method are compared with the corresponding experimental values and it is found that the proposed method is able to predict the shear capacity accurately.