Kim, Junhee;Lee, Hyunju;Kim, Sungwon;Kim, Donghwan
한국신재생에너지학회:학술대회논문집
/
2010.06a
/
pp.77.1-77.1
/
2010
반도체 나노 결정은 크기와 모양에 따라 다른 광학적 전기적 성질을 보이는 독특한 특성 때문에 태양전지, 발광 다이오드, 레이저, 바이오메디컬 레이블링 등에 응용될 수 있는 저가격의 차세대 광전기 재료의 개발을 위한 구조체로 각광받고 있다. 최근에는 하나의 나노 결정에 type-II band offset을 가지는 두 개의 물질을 결합한 이종접합 나노 결정체의 연구가 활발하게 진행되고 있는데, 이는 나노 결정 내에서 빛에 의해 생성된 전하들을 공간적으로 분리해 낼 수 있는 장점을 가지고 있기 때문에 태양전지나 광촉매로의 응용에 매우 유용하다. 우리는 나노 결정과 고분자 하이브리드 태양전지의 제작에 있어서 성분과 type-II 이종접합 반도체 나노 결정의 영향을 조사하기 위하여 CdSe, CdTe, type-II CdTe/CdSe tetrapod을 합성하였다. CdSe tetrapod과 P3HT의 블렌딩에 의해 만들어진 태양전지는 AM 1.5, 100mW/$cm^2$ 조건에서 1.03%의 가장 높은 변환 효율, 그리고 415nm에서 43%의 IPCE를 나타내었다. 그리고 CdTe/CdSe type-II tetrapod 이종접합과 P3HT 블렌딩으로 만들어진 태양전지는 CdTe를 이용하여 만든 태양전지에 비해 4.4배의 변환효율과 3.9배의 단락전류를 나타내었다.
The characteristics of spatter generation in the short circuit transfer region of $CO_2$ welding was investigated. Spatteriing phenomena could be classified into three types : Type I generated due to the abrupt increase of arc voltage in arcing duration. Type II by the gas ejection from molten metal and Type III generated by the arc instability at the moment of arc re-ignition just after short circuiting. Main observed types were dependent on the chemical composition of welding wires. The case of YCW12 wires was mainly composed of spatters generated by Type l and Type II, while most, spatters in YCW11 wires were generated by Type II and Type III.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2008.11a
/
pp.91-91
/
2008
ZnO는 넓은 밴드갭(3.37eV)과 큰 엑시톤(exciton) 결합에너지(60meV) 를 가지는 II-VI족 산합물 반도체로, 상온에서도 높은 재결합 효율이 기대되는 엑시톤 전이가 가능하여 자발적인 발광특성 및 레이저 발진을 위한 낮은 임계전압을 보여주는 장점을 가지고 있다. 이러한 특성을 이용해, 최근 ZnO 박막을 이용한 LED 및 LD 소자 제작에 대한 연구가 국내외적으로 매우 활발하게 이루어지고 있다. 하지만 아직까지 p-type ZnO는 전기적 특성 및 재현성 문제를 극복하지 못하고 있기 때문에 ZnO를 이용한 동종접합구조를 이용한 소자제작은 어려움이 따른다. 이런 문제점을 극복하기 위해 최근 p-type 물질을 ZnO와 결정구조 및 특성이 거의 유사한 GaN를 많이 이용하고 있다. 또한 RF 스퍼터링법을 이용해 박막을 성장할 경우 성장조건 및 불순물 도핑 등에 따라 성장되는 n-type ZnO의 전기적 특성 및 밴드갭을 조절할 수 있다. 본 연구에서는 RF 스퍼터링법을 이용해 p-type GaN 기판위에 n-type ZnO를 성장한 이종접합구조를 이용해 발광 다이오드를 제작하고 그에 대한 특성 평가를 하였다. 이때 성장시킨 n-type ZnO는 여러 가지 성장 변수 및 불순물 도핑으로 전기전 특성 변화 및 밴드갭 조절을 통해 발광특성 변화에 대해 특성 평가를 하였다.
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.310-310
/
2014
ZnO박막은 넓은 밴드갭 (3.37 eV), 높은 여기 결합 에너지 (60 meV)를 가지는 육방정계 우르자이트(hexagonal wurtzite) 결정구조를 가지는 II-VI족 화합물 반도체로, 가시광선 영역에서의 높은 광학적 투과도 특성과 자외선 파장에서 발광이 가능한 장점을 가진다. 최근, ZnO박막 성장 기술이 상당히 발전하였지만, 아직까지도 p-형 ZnO박막 성장 기술은 충분히 발전하지 못하여 ZnO의 동종접합 LED는 아직 상용화되지 않고 있는 실정이다. 따라서, 많은 연구 그룹에서 p-GaN, p-SiC, p-diamond, p-Si 등과 같은 p-type 물질 위에 n-type ZnO를 성장시킨 이종접합 다이오드가 연구되고 있다. 특히, p-GaN의 경우 ZnO와의 격자 불일치 정도가 1.8 % 정도로 작다는 장점이 있어 많은 연구가 이루어 지고 있다. 일반적으로 c-축을 기반으로 한 극성ZnO 발광다이오드에서는 자발 분극과 압전 분극 현상에 의해 밴드 휨 현상이 발생하고, 이로 인해 전자와 정공의 공간적 분리가 발생하게 되어 발광 재결합 효율이 제한되고 있다는 문제가 발생한다. 따라서, 본 연구에서는 극성 (0001) 및 비극성 (10-10) n-ZnO/p-GaN 발광다이오드의 성장 및 발광 소자의 전기 및 광학적 특성에 대한 비교 연구를 진행하였다. 금속유기 화학증착법을 이용하여 c-면과 m-면 위에 각각 극성 (0001) 및 반극성 (11-22) GaN박막을 $2.0{\mu}m$ 성장시킨 후 Mg 도핑을 한 p-GaN을 $0.4{\mu}m$ 성장시켜 각각 극성 (0001) 및 반극성 (11-22) p-GaN템플릿을 준비하였다. 이후, N2분위기 $700^{\circ}C$에서 3분동안 열처리를 통하여 Mg 도펀트를 활성화시킨 후 원자층 증착법을 이용하여 동시에 극성 및 반극성 p-GaN의 위에 n-ZnO를 $0.11{\mu}m$ 성장시켜 이종접합구조의 발광소자를 형성하였다. 이때, 극성 (0001) p-GaN 위에는 극성의 n-ZnO 박막이 성장되는 반면, 반극성 (11-22) p-GaN 위에는 비극성 (10-10) n-ZnO 박막이 성장됨을 HR-XRD로 확인하였다. 극성 (0001) n-ZnO/p-GaN이종접합 발광다이오드의 전계 발광 스펙트럼에서는 430 nm 와 550 nm의 두 피크가 동시에 관찰되었다. 430 nm 대역의 파장은 p-GaN의 깊은 준위에서 발광하는 것으로 판단되며, 550 nm 피크 영역은 ZnO의 깊은 준위에서 발광되는 것으로 판단된다. 특히, 10 mA 이하의 저전류 주입시 550 nm의 피크는 430 nm 영역보다 더 큰 발광세기를 나타내고 있다. 하지만, 10 mA 이상의 전류주입 하에서는 550 nm의 영역보다 430 nm의 발광세기가 더욱 증가하는 것을 확인할 수 있었다. 이것은 ZnO의 밴드갭이 3.37 eV로 GaN의 밴드갭인 3.4 eV다 작기 때문에 우선적으로 ZnO의 깊은 준위에서 발광하는 550 nm가 더욱 우세하지만, 지속적으로 전류주입 증가에 따른 캐리어 증가시 n-ZnO에서 p-GaN로 전자가 넘어가며 p-GaN의 깊은 준위인 430 nm에서의 피크가 우세해지는 것으로 판단된다. 반면에, 비극성 (10-10) n-ZnO/반극성 (11-22) p-GaN 구조의 이종접합 발광다이오드로 전계 발광 스펙트럼에서는 극성 (0001) n-ZnO/p-GaN에 비하여 매우 낮은 전계 발광 세기를 나타내고 있다. 이는, 극성 n-ZnO/p-GaN에 비하여 비극성 n-ZnO/반극성 p-GaN의 결정성이 상대적으로 낮기 때문으로 판단된다. 또한, 20 mA 영역에서도 510 nm의 깊은 준위와 430 nm의 발광이 관찰되었다. 동일한 20 mA하에서 두 피크의 발광세기를 비교하면 430 nm의 영역은 극성 n-ZnO/p-GaN에 비하여 매우 낮은 값을 나타내고 있다. 이는 반극성 (11-22) p-GaN의 경우 극성 (0001) p-GaN에 비하여 우수한 p-형 특성에 기인한 것으로 판단된다.
Proceedings of the Korean Vacuum Society Conference
/
2011.08a
/
pp.378-378
/
2011
ZnO 나노선 구조는 나노선 구조를 통해 입사한 빛을 산란시켜 광흡수를 촉진시키고, 바닥 전극으로 바로 이어진 수직의 1차원 구조를 통해 전자가 빠르게 이동할 수 있으며, 넓은 표면적을 가지고 있는 등의 장점을 가지고 있어 오래전부터 광전소자에 이용되었다. 하지만 ZnO 물질 자체의 밴드갭 에너지가 3.2 eV로 비교적 큰 편이라 가시광 영역의 빛을 흡수, 이용하기 위해서는 작은 밴드갭을 가지는 광감응 물질이 필요하다. 본 연구에서는 저온의 수열합성법을 통해 합성한 ZnO 나노선 구조 상에 Cd 계열의 무기물 양자점을 증착하여 이종구조를 형성하는 방법을 개발하였다. 본 연구에서 사용한 양자점인 CdS와 CdSe는 벌크 밴드갭 에너지가 각각 2.3 eV, 1.7 eV로 가시광 영역의 빛을 흡수할 수 있으며, ZnO 나노선과 type-II 밴드구조를 가지기 때문에 전자-정공 분리 및 포집에 유리하다. 합성된 구조를 이용하여 photoelectrochemical 특성을 분석하였으며, 그 결과 양자점의 증착으로 광전류 생성이 향상됨을 확인하였다. 특히 ZnO 나노선 상에 CdS 양자점 증착 후 추가적으로 CdSe 양자점을 증착하여 다중접합 나노선 구조를 형성한 경우 광전류 생성이 가장 크게 향상된 결과를 확인하였다.
Journal of the Korean Institute of Telematics and Electronics D
/
v.36D
no.3
/
pp.66-74
/
1999
InAlGaAs/InGaAs HBTs with the various emitter junction gradings(xf=0.0-1.0) and the modified collector structures (collector- I;n-p-n, collector-II;i-p-n) are simulated and analyzed by HMC (Hybrid Monte Carlo) method in order to find an optimum structure for the shortest transit time. A minimum base transit time($ au$b) of 0.21ps was obtainsed for HBT with the grading layer, which is parabolically graded from $x_f$=1.0 and xf=0.5 at the emitter-base interface. The minimum collector transit time($\tau$c) of 0.31ps was found when the collector was modified by inserting p-p-n layers, because p layer makes it possible to relax the electric field in the i-type collector layer, confining the electrons in the $\Gamma$-valley during transporting across the collector. Thus InAlGaAs/InGaAs HBT in combination with the emitter grading($x_f$=0.5) and the modified collector-III showed the transit times of 0.87 psec and the cut-off frequency (f$\tau$) of 183 GHz.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2008.11a
/
pp.112-112
/
2008
박막형 태양전지에 관한 연구는 1954년 D.C. Reynolds 가 단결정 CdS 에서 광기전력을 발견하면서부터 시작되었다. 고효율 단결정 규소 태양전지가 간편하게 제작되고 박막형 태양전지의 수명문제가 대두되어 한때는 연구가 중단되어지기도 하였으나, 에너지 문제가 심각해지면서 값이 저렴하고 넓은 면적에 쉽게 실용화 할 수 있는 박막형 태양전지에 많은 관심을 가지게 되었다. 박막형 태양전지에 사용되는 CdS는 II-VI 족 화합물 반도체로서 에너지금지대폭이 2.42eV인 직접천이형 n-type 반도체로서 대부분의 태양광을 통과시킬 수 있으며 가시광선을 잘 투과시키고 낮은 비저항으로서 광흡수층인 CdTe/$CuInSe_2$ 등과 같이 태양전지의 광투과층(윈도레이어)으로 널리 사용되고 있다. 이러한 이종접합 박막형 태양전지의 효율을 높이기 위해선 윈도레이어 재료인 CdS 박막의 낮은 전기 비저항치와 높은 광 투과도 값이 요구되어지고 있다. CdS 박막의 제작방법으로는 spray pyrolysis법, 스크린프린팅, 소결법, puttering법, 전착법, CBD(chemical bath deposition)법 및 진공증착법 등의 여러 가지 방법들이 보고되었다. 이 중 sputtering의 경우, 다른 방법들에서는 얻기 어려운 매우 얇은 두께의 박막 증착이 가능하며, 균일성 또한 우수하다. 또한 대면적화가 용이하여 양산화 기술로는 다른 제조 방법들에 비해 많은 장점을 가지고 있다. 따라서 본 연구에서는 sputtering에 의해 증착한 CdS의 박막에 광투과도 등의 향상을 위하여 CMP( chemical mechanical polishing) 공정을 적용하여 표면 특성을 개선하고자 하였다. 그 기초적인 자료로서 CdS 박막의 CMP 공정 조건에 따른 연마율과 비균일도, 표면 특성 등을 ellipsometer, AFM(atomic force microscopy) 및 SEM(scanning electron microscope) 등을 활용 하여 분석하였다.
The valence band maximum and the conduction band miminum of GaAs, GaSb, InAs, and InSb (constituent binaries of the quaternaty alloy $Ga_xIn_{1-x}Sb_yAs_{1-y}$) are calculated by using TB analytical approach method. The band alignment types of their heterojunctions are determined directly from their relative position of band edges (VBM and CBM). For example, the GaAs/InAs, GaAs/InSb, and GaSb/InSb are in a type-I, the GaAs/GaSb in a type-II, and the GaSb/InAs and InSb/InAs in a type-III, respectively. The composition dependent VBM and CBM for the $Ga_xIn_{1-x}Sb_yAs_{1-y}$ alloy are obtained by using the univeral tight binding method. For the alloyed heterojunctions, the band alignments can be controlled by changing the composition which induce a band type transition. For the alloy $Ga_xIn_{1-x}Sb_yAs_{1-y}$ lattice mathced to GaSb, the type-II band alignment in the region of $x{\leq}0.15$ is changed to the type-III in the region of $x{\geq}0.81$. On the other hand, the alloy $Ga_xIn_{1-x}Sb_yAs_{1-y}$ lattice mathced to InAs has the type-II band alignment in the region of $x{\leq}0.15$ and the type-III band alignment in the region of $x{\geq}0.81$, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.