• Title/Summary/Keyword: type of a ring

Search Result 900, Processing Time 0.028 seconds

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

Optimum topology design of geometrically nonlinear suspended domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.667-694
    • /
    • 2015
  • The suspended dome system is a new structural form that has become popular in the construction of long-span roof structures. Suspended dome is a kind of new pre-stressed space grid structure that has complex mechanical characteristics. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The length of the strut, the cable initial strain, the cross-sectional area of the cables and the cross-sectional size of steel elements are adopted as design variables and the minimum volume of each dome is taken as the objective function. The topology optimization on lamella dome is performed by considering the type of the joint connections to determine the optimum number of rings, the optimum number of joints in each ring, the optimum height of crown and tubular sections of these domes. A simple procedure is provided to determine the configuration of the dome. This procedure includes calculating the joint coordinates and steel elements and cables constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). This paper explores the efficiency of lamella dome with pin-joint and rigid-joint connections and compares them to investigate the performance of these domes under wind (according to the ASCE 7-05), dead and snow loading conditions. Then, a suspended dome with pin-joint single-layer reticulated shell and a suspended dome with rigid-joint single-layer reticulated shell are discussed. Optimization is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for suspended domes.

Impact of Media Type and Various Operating Parameters on Nitrification in Polishing Biological Aerated Filters

  • Ha, Jeong-Hyub;Ong, Say-Kee;Surampalli, R.
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.79-84
    • /
    • 2010
  • Three biological aerated filters (BAFs) composed of a PVC pipe with a diameter of 75 mm were constructed and operated at a waste-water temperature at $13^{\circ}C$. The media used for each BAF were: 5-mm gravel; 5-mm lava rock; 12.5-mm diameter by 15-mm long plastic rings, all with a media depth of 1.7 m. The feedwater, which simulated the effluent of aerated lagoons, had influent soluble chemical oxygen demand (sCOD) and ammonia concentrations of approximately 50 and 25 mg/L, respectively. For a hydraulic retention time (HRT) of two hours without recirculation, ammonia percent removals were 98.5, 98.9, and 97.8%, for the gravel, lava rock, and plastic rings, respectively. By increasing the effluent recirculation from 100 to 200% for an HRT of one hour, respective ammonia removals improved from 90.1 to 96, 76.5 to 90, and 65.3 to 79.5% for gravel, lava rock, and plastic rings. Based on the ammonia and sCOD loadings for different HRTs, the estimated maximum ammonia loading was approximately 0.6 kg $NH_3-N/m^3$-day for the three BAFs of different media types. The zero-order biotransformation rates for the BAF with gravel were found to be higher than the lava rock and plastic ring media. The results ultimately showed that BAF can be used as an add-on system to aerated lagoons or as a secondary treatment unit to meet ammonia discharge limits.

A Study on the Unstable behavior According to rise-span ratio of dome type space frame (돔형 공간 구조물의 Rise-span 비에 따른 불안정 거동 특성에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.75-82
    • /
    • 2004
  • Many researcher's efforts have made a significant advancement of space frame structure with various portion, and it becomes the most outsanding one of space structures. However, with the characteristics of thin and long term of spacing, the unstable behavior of space structure is shown by initial imperfection, erection procedure or joint, especially space frame structure represents more. This kind of unstable problem could not be set up clearly and there is a huge difference between theory and experiment. Moreover, the discrete structure such as space frame has more complex solution, this it is not easy to derive the formulation of design about space structure. In this space frame structure, the character of rise-span ratio or load mode is represented by the instability of space frame structure with initial imperfection, and snap-through or bifurcation might be the main phenomenon. Therefore, in this study, space frame structure which has a lot of aesthetic effect and profitable for large space covering single layer is dealt. And because that the unstable behavior due to variation of inner force resistance in the elastic range is very important collapse mechanism, I would like to investigate unstable character as a nonlinear behavior with a geometric nonlinear. In order to study the instability. I derive tangent stiffness matrix using finite element method and with displacement incremental method perform nonlinear analysis of unit space structure, star dome and 3-ring star dome considering rise-span $ratio(\mu}$ and load $ratio(R_L)$ for analyzing unstable phenomenon.

  • PDF

Incidence and Clinical Features of Urethral Injuries with Pelvic Fractures in Males: A 6-Year Retrospective Cohort Study at a Single Institution in South Korea

  • Sun, Hyun Woo;Kim, Hohyun;Jeon, Chang Ho;Jang, Jae Hoon;Kim, Gil Hwan;Park, Chan Ik;Park, Sung Jin;Kim, Jae Hun;Yeom, Seok Ran
    • Journal of Trauma and Injury
    • /
    • v.34 no.2
    • /
    • pp.98-104
    • /
    • 2021
  • Purpose: Severe pelvic fractures are associated with genitourinary injuries, but the relationship between pelvic trauma and concomitant urethral injuries has yet to be elucidated. This study evaluated the incidence, mechanism, site, and extent of urethral injuries in male patients with pelvic fractures. Methods: A retrospective cohort study was performed involving patients with urethral injuries accompanying pelvic fractures who visited Pusan National University Hospital from January 1, 2014 to December 31, 2019. Demographics, mechanisms of injury, clinical features of the urethral injuries, concomitant bladder injuries, methods of management, and the configuration of the pelvic fractures were analyzed. Results: The final study population included 24 patients. The overall incidence of urethral injury with pelvic fracture was 2.6%, with the most common mechanism of urethral injury being traffic accidents (62.5%). Complete urethral disruption (16/24, 66.7%) was more common than partial urethral injuries (8/24, 33.3%), and unstable pelvic fractures were the most common type of pelvic fracture observed (70.8%). There was no definitive relationship between the extent of urethral injury and pelvic ring stability. Conclusions: The present study provides a 6-year retrospective review characterizing the incidence, mechanism, and clinical features of urethral injury-associated pelvic fractures. This study suggests that the possibility of urethral injury must be considered, especially in unstable pelvic fracture patients, and that treatment should be chosen based on the clinical findings.

Effect of Chemical Stabilizers in Silver Nanoparticle Suspensions on Nanotoxicity

  • Bae, Eun-Joo;Park, Hee-Jin;Park, Jun-Su;Yoon, Je-Yong;Kim, Young-Hun;Choi, Kyung-Hee;Yi, Jong-Heop
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.613-619
    • /
    • 2011
  • Colloidal silver nanoparticles (AgNPs) have been commercialized as the typically stabilized form via the addition of a variety of surfactants or polymers. Herein, to examine the effects of stabilizing AgNPs in suspension, we modified the surface of bare AgNPs with four type of surfactants (NaDDBS, SDS, TW80, CTAB) and polymers (PVP, PAA, PAH, CMC). The modified AgNPs was applied to compare suspension stability and nanotoxicity test using Escherichia coli (E. coli) as a model organism. Modification of AgNPs surface using chemical stabilizer may be not related with molecular weight, but chemical structure such as ionic state and functional group of stabilizer. In this study, it is noteworthy that AgNPs modified with a cationic stabilizer (CTAB, PAH) were importantly toxic to E. coli, rather than anionic stabilizers (NaDDBS, SDS). Comparing similar anionic stabilizer, i.e., NaDDBS and SDS, the result showed that lipophilicity of chemical structure can affect on E. coli, because NaDDBS, which contains a lipophilic benzene ring, accelerated the cytotoxicity of AgNPs. Interestingly, none of the stabilizers tested, including biocompatible nonionic stabilizers (i.e., TW80 and cellulose) caused a reduction in AgNP toxicity. This showed that toxicity of AgNPs cannot be reduced using stabilizers.

Visualization of the Gastric Calcification due to Cancer on Tc-99m DPD and Abdominal CT Images (Tc-99m DPD 골스캔과 복부 CT 영상에서 보이는 위암의 석회화)

  • Jeong, Young-Jin;Kang, Do-Young
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.5
    • /
    • pp.344-346
    • /
    • 2004
  • A 69-year-old woman was presented with progressed dysphagia, gastric soreness and weight loss during 2 months. She was performed abdomen x-ray, EGDS and abdomen CT. Abdomen x-ray demonstrated punctuate calcification on LUQ. EGDS showed an ulceroinfiltrative mass with bleeding on cardia to antrum of stomach. And CT showed diffuse gastric wall thickness with multiple calcifications. Biopsy of the stomach and esophagus during EGDS examination revealed an adenocarcinoma, with signet ring cell type, infiltrating the wall of the stomach and the distal esophagus. Then acne scan was performed a few days later. It revealed intense uptake in LUQ, corresponding to the calcium containing neoplasm seen on the abdomen x-ray, EGDS and abdomen CT. And there was no evidence of any metastatic lesion and thyroid uptake on the bone scan. There are many reports about accumulation of the tracer in extraosseous lesion, but only a few literatures were reported about gastric calcification in stomach cancer. More over, no reports showed CT images. We are performed many diagnostic examinations and found well correlation between them. The reason of gastric calcification is considered with calcium deposition within extracellular space due to hemorrhage or necrosis. Other possibility offered to explain gastric calcification have been increased blood flow and/or increased neovascularity with capillary leaks of tracer, and specific enzymatic (phosphatases) receptor binding of tracer. So, it was happened ion exchange between intracellular calcium and phosphate groups of tracer.

Time-Based Characteristics of Acoustic Emission During Dental Composite Restoration (치아 와동의 복합레진 수복시 음향방출의 시간적 발생 특성)

  • Gu, Ja-Uk;Choi, Nak-Sam;Arakawa, Kazuo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.169-174
    • /
    • 2011
  • Acoustic emission (AE) signals were detected and analyzed in real time during the polymerization shrinkage of composite resin restoration in an artificial dental ring with a class I cavity. Most AE hit events were observed in the initial curing period of the 1st region with high contraction rate. The range of the $2^{nd}$ region for the stainless steel specimen was shorter than that for the PMMA specimen but longer than that for the human dentin specimen. AE hit events showed a blast-type signal having an amplitude in the range of 25.45 dB and a frequency band of 100.200 kHz or 240.300 kHz. These values of amplitude and frequency indicated the fracture of resin or of the adhesive layer.

Development of Water-lubricated Plastic Bearings (수-윤활용 플라스틱 베어링 개발에 관한 연구)

  • Hosung Kong;Hung-gu Han
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.235-243
    • /
    • 2023
  • This paper presents the fabrication process of water-lubricated plastic bearings. Plastic bearings require good mechanical properties and tribological properties as well as elasticity and shock resistance, especially when lubricated in dirty water conditions. In this study, sleeve-type plastic bearings are produced by winding a prepreg sheet, which primary contains nitrile rubber (NBR)-modified epoxy, self-lubricating fillers, and various types of lattice-structured reinforcing fibers such as carbon, Aramid, and polyethylene terephthalate. A thermosetting epoxy is chemically modified with NBR to impart elasticity and low-friction characteristics in water conditions. Experimental investigations are conducted to examine the mechanical and tribological characteristics of the developed bearing materials, and the results are compared with the characteristics of a commercial plastic bearing (Thordon SXL), well known as a water-lubricated bearing. A Thordon bearing (mainly composed of polyurethane) exhibits an extremely low load-bearing capacity and is thus only suitable for medium loading (1~10MPa). The tribological characteristics of the test materials are evaluated through Falex block-on-ring (LFW-1) friction and wear tests. The results indicate that friction exhibited by the carbon-fiber-reinforced NBR-10wt.%-modified epoxy composite material, incorporated with the addition of 20wt.% UHMWPE and 6wt.% paraffin wax, is lower than that of the Thorden bearings, whereas its wear resistance surpass that of Thorden ones. Because of these features, the load carrying capacity of the fabricated composite (>10MPa) is higher than that of the Thorden bearings. These results confirm the applicability of water-lubricated plastic bearing materials developed in this study.

Diameter Effect of Induced Voltage in Sensing Coil Buried in Projectile for Application of Air Bursting Munition (공중파열탄용 포탄에 묻혀있는 탐지코일의 직경에 의한 유도전압 변화)

  • Ryu, Kwon Sang;Nahm, Seung Hoon;Jung, Jae Gap;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.62-66
    • /
    • 2016
  • We designed a model composed a ring type magnet, a yoke, and a sensing coil buried in a projectile for calculating the muzzle velocity based on the voltage induced from sensing coil by simulation. The muzzle velocity was calculated from the master curve obtained through the voltage induced from sensing coil by simulation. The induced voltage increased with increasing the diameter of sensing coil. The projectile's velocity was proportional to the induced voltage when the sensing coil was buried in projectile. The projectile will be surely exploded at the target region by inputting the information of muzzle velocity variation corrected the diameter effect of induced voltage of sensing coil.