• Title/Summary/Keyword: two-step approach

Search Result 586, Processing Time 0.033 seconds

A New Transition Criterion for Stratified and Nonstratified Flows in Pipes

  • Sung, Chang-Kyung;Chun, Moon-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.219-226
    • /
    • 1996
  • A two-step approach has been used to obtain a new transition criterion for the stratified and nonstratified flow in horizontal pipe: (1) In the first step, a more general expression than the existing models for the flow transition criterion has been derived from the analysis of singular points and neutral stability conditions, or the parallel lines conditions of the transient one-dimensional two- phase flow equations of two-fluid model. (2) In the second step, introducing simplifications and incorporating a parameter into the general expression obtained in the first step to satisfy a number of physical conditions a priori specified, a new simple flow transition criterion for horizontal pipes has been derived. Comparison between results predicted by the present theory with the experimental data and theories in the pipe flow conditions, show good agreement.

  • PDF

A maximum likelihood approach to infer demographic models

  • Chung, Yujin
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.385-395
    • /
    • 2020
  • We present a new maximum likelihood approach to estimate demographic history using genomic data sampled from two populations. A demographic model such as an isolation-with-migration (IM) model explains the genetic divergence of two populations split away from their common ancestral population. The standard probability model for an IM model contains a latent variable called genealogy that represents gene-specific evolutionary paths and links the genetic data to the IM model. Under an IM model, a genealogy consists of two kinds of evolutionary paths of genetic data: vertical inheritance paths (coalescent events) through generations and horizontal paths (migration events) between populations. The computational complexity of the IM model inference is one of the major limitations to analyze genomic data. We propose a fast maximum likelihood approach to estimate IM models from genomic data. The first step analyzes genomic data and maximizes the likelihood of a coalescent tree that contains vertical paths of genealogy. The second step analyzes the estimated coalescent trees and finds the parameter values of an IM model, which maximizes the distribution of the coalescent trees after taking account of possible migration events. We evaluate the performance of the new method by analyses of simulated data and genomic data from two subspecies of common chimpanzees in Africa.

An Efficient Split-Step Time-Domain Dynamic Modeling of DFB/DBR Laser Diodes (연산자 분리 방법을 통한 DFB/DBR 레이저 다이오드의 효율적인 시영역 동적 모델링)

  • Kim, Byoung-Sung;Chung, Young-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.7
    • /
    • pp.17-28
    • /
    • 2000
  • A novel and efficient approach for the numerical solution of time-dependent coupled-wave equations, which are frequently used for the modeling of DFB(Distributed Feedback), DBR(Distributed Bragg Reflector), and FP(Fabry Perot) laser diodes, is proposed. In this approach, the coupled wave equations are split into two sets of equations. One of two sets of equations contains only the phase factors and the other contains only the coupling terms. The separate equations are solved exactly in their split form successively. This new numerical scheme, which we call the SS-TDM(Split-Step Time Domain Model), is found to require an order of magnitude smaller number of subsections to get accurate results than the previous methods while the computation time for each time step is comparable to the previous methods.

  • PDF

Verification of a two-step code system MCS/RAST-F to fast reactor core analysis

  • Tran, Tuan Quoc;Cherezov, Alexey;Du, Xianan;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1789-1803
    • /
    • 2022
  • RAST-F is a new full-core analysis code based on the two-step approach that couples a multi-group cross-section generation Monte-Carlo code MCS and a multi-group nodal diffusion solver. To demonstrate the feasibility of using MCS/RAST-F for fast reactor analysis, this paper presents the coupled nodal code verification results for the MET-1000 and CAR-3600 benchmark cores. Three different multi-group cross-section calculation schemes are employed to improve the agreement between the nodal and reference solutions. The reference solution is obtained by the MCS code using continuous-energy nuclear data. Additionally, the MCS/RAST-F nodal solution is verified with results based on cross-section generated by collision probability code TULIP. A good agreement between MCS/RAST-F and reference solution is observed with less than 120 pcm discrepancy in keff and less than 1.2% root-mean-square error in power distribution. This study confirms the two-step approach MCS/RAST-F as a reliable tool for the three-dimensional simulation of reactor cores with fast spectrum.

Two Step on-axis Digital Holography Using Dual-channel Mach-Zehnder Interferometer and Matched Filter Algorithm

  • Lee, Hyung-Chul;Kim, Soo-Hyun;Kim, Dae-Suk
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.363-367
    • /
    • 2010
  • A new two step on-axis digital holography (DH) is proposed without any assumptions, phase shifting, or complicated optical components. A dual-channel Mach-Zehnder interferometer was employed. Using that setup, the object field can be reconstructed requiring only two step measurements. To eliminate position difference between two charge-coupled device (CCD) cameras, a matched filter algorithm was used. Experimental results are compared to those of the traditional phase shifting technique. The proposed approach can also be applied to single-exposure on-axis DH for real time measurement.

Time series analysis for Korean COVID-19 confirmed cases: HAR-TP-T model approach (한국 COVID-19 확진자 수에 대한 시계열 분석: HAR-TP-T 모형 접근법)

  • Yu, SeongMin;Hwang, Eunju
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.239-254
    • /
    • 2021
  • This paper studies time series analysis with estimation and forecasting for Korean COVID-19 confirmed cases, based on the approach of a heterogeneous autoregressive (HAR) model with two-piece t (TP-T) distributed errors. We consider HAR-TP-T time series models and suggest a step-by-step method to estimate HAR coefficients as well as TP-T distribution parameters. In our proposed step-by-step estimation, the ordinary least squares method is utilized to estimate the HAR coefficients while the maximum likelihood estimation (MLE) method is adopted to estimate the TP-T error parameters. A simulation study on the step-by-step method is conducted and it shows a good performance. For the empirical analysis on the Korean COVID-19 confirmed cases, estimates in the HAR-TP-T models of order p = 2, 3, 4 are computed along with a couple of selected lags, which include the optimal lags chosen by minimizing the mean squares errors of the models. The estimation results by our proposed method and the solely MLE are compared with some criteria rules. Our proposed step-by-step method outperforms the MLE in two aspects: mean squares error of the HAR model and mean squares difference between the TP-T residuals and their densities. Moreover, forecasting for the Korean COVID-19 confirmed cases is discussed with the optimally selected HAR-TP-T model. Mean absolute percentage error of one-step ahead out-of-sample forecasts is evaluated as 0.0953% in the proposed model. We conclude that our proposed HAR-TP-T time series model with optimally selected lags and its step-by-step estimation provide an accurate forecasting performance for the Korean COVID-19 confirmed cases.

A Study on Flow Characteristics of Two-Dimensional Backward-Facing Step by CFD (CFD에 의한 2차원 후향계단에서의 재부착 유동특성에 관한 연구)

  • 이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.9-18
    • /
    • 1999
  • The present study is aimed to investigate flow characteristics of two-dimensional backward-fac-ing step by numerical approach. A convection conservation difference scheme based upon SOLA algorithm is used for the solution of the two-dimensional incompressible Navier-Stokes equations to simulate the laminar transitional and trubulent flow conditions at which the experimental data can be available for the backlward-facing step. The twenty kinds of reynolds number are used for the calculations. In an effort to demonstrate that the reported solutions are dependent on the mesh refinement computations are performed on seven different meshes of uniformly increasing refinement. also to investigate the result of inflow dependence two kinds of the inflow profile are chosen for the laminar flow. Irregular grid is adopted to minimize the errors on the satis-faction fo the discretized continuity. As criterion of benchmarking the result of numerical simula-tion reattachment lengthis used for the selected Reynolds numbers. The results of the present study prove the fact that the numerical predictions agree well with the experimental data and the flow characteristics are shown at the backward-facing step.

  • PDF

ORBITAL MANEUVER USING TWO-STEP SLIDING MODE CONTROL (2단 슬라이딩 제어기법을 이용한 인공위성의 궤도조정)

  • 박종옥;이상욱;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.235-244
    • /
    • 1998
  • The solutions of orbital maneuver problem using the sliding mode control in the presence of the erath gravitational perturbations is obtained. Especially, the optimization of consuming fuel for maneuver is performed. The impulsive solution to Lambert's problem using the combined equation method to minimize total ${\Delta}V is used for the desired orbit and the maneuver times. Two-step sliding mode control method is introduced for satisfying the boundary conditions of finite-thrust rendezvous problem at the end of maneuver time. Using the new approach to the orbit maneuver problem, two-step sliding mode control, orbit maneuvers are processed. The solutions to a rendezvous using the optimal control are obtained, and they are compared to the results by two-step sliding control.According to the new approach for orbit maneuver, the thrust-coast-thrust type controller is obtained to make satellite to track desired Lambert's orbit, and the total ${\Delta}V$ required for maneuver is resonable in comparison with the impulsive solution to Lambert's problem. The final state variables, also are close to the boundary conditions at the end of maneuver times.

  • PDF

Step-by-step Approach for Effective Korean Unknown Word Recognition (한국어 미등록어 인식을 위한 단계별 접근방법)

  • Park, So-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.369-372
    • /
    • 2009
  • Recently, newspapers as well as web documents include many newly coined words such as "mid"(meaning "American drama" since "mi" means "America" in Korean and "d" refers to the "d" of drama) and "anseup"(meaning "pathetic" since "an" and "seup" literally mean eyeballs and moist respectively). However, these words cause a Korean analyzing system's performance to decrease. In order to recognize these unknown word automatically, this paper propose a step-by-step approach consisting of an unknown noun recognition phase based on full text analysis, an unknown verb recognition phase based on web document frequency, and an unknown noun recognition phase based on web document frequency. The proposed approach includes the phase based on full text analysis to recognize accurately the unknown words occurred once and again in a document. Also, the proposed approach includes two phases based on web document frequency to recognize broadly the unknown words occurred once in the document. Besides, the proposed model divides between an unknown noun recognition phase and an unknown verb recognition phase to recognize various unknown words. Experimental results shows that the proposed approach improves precision 1.01% and recall 8.50% as compared with a previous approach.

  • PDF

Switching Control of Ball and Beam System using Partial State Feedback: Jacobian and Two-Step Linearization Methods (자코비안 및 2단 선형화 기법과 부분 상태궤환을 이용한 볼-빔 시스템의 스위칭 제어)

  • Lee, Kyung-Tae;Choi, Ho-Lim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.819-832
    • /
    • 2017
  • We propose a new switching control scheme for a ball and beam system by utilizing two linearization methods. First, the Jacobian linearization is applied and state observer is developed afterward. Then, motivated [6], the approximate input-output linearization is carried out, and after that, the Jacobian linearization is applied along with the design of state observer. Since the second approach requires two linearizations, it is called a two-step linearization method. The state observer is needed for the estimation of the velocities of ball and motor movement. Since the Jacobian linearization based controller tends to provide faster response at the initial time, and after that, the two-step linearization based controller tends to provide better response in terms of output overshoot and convergence to the origin, it is natural to give a switching control scheme to provide the best overall control response. The validity of our control scheme is shown in both simulation and experimental results.