• Title/Summary/Keyword: two-sided best simultaneous approximation

Search Result 3, Processing Time 0.015 seconds

TWO-SIDED BEST SIMULTANEOUS APPROXIMATION

  • Rhee, Hyang Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.705-710
    • /
    • 2010
  • Let $C_1(X)$ be a normed linear space over ${\mathbb{R}}^m$, and S be an n-dimensional subspace of $C_1(X)$ with spaned by {$s_1,{\cdots},s_n$}. For each ${\ell}$- tuple vectors F in $C_1(X)$, the two-sided best simultaneous approximation problem is $$\min_{s{\in}S}\;\max\limits_{i=1}^\ell\{{\parallel}f_i-s{\parallel}_1\}$$. A $s{\in}S$ attaining the above minimum is called a two-sided best simultaneous approximation or a Chebyshev center for $F=\{f_1,{\cdots},f_{\ell}\}$ from S. This paper is concerned with algorithm for calculating two-sided best simultaneous approximation, in the case of continuous functions.

EXPANSION THEORY FOR THE TWO-SIDED BEST SIMULTANEOUS APPROXIMATIONS

  • RHEE, HYANG JOO
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.437-442
    • /
    • 2021
  • In this paper, we study the characterizations of two-sided best simultaneous approximations for ℓ-tuple subset from a closed convex subset of ℝm with ℓm1(w)-norm. Main fact is, k* is a two-sided best simultaneous approximation to F from K if and only if there exist f1, …, fp in F, for any k ∈ K $${\mid}{\sum\limits_{i=1}^{m}}sgn(f_{ji}-k^*_i)k_iw_i{\mid}{\leq}\;{\sum\limits_{i{\in}Z(f_j-k^*)}}\;{\mid}k_i{\mid}w_i$$ for each j = 1, …, p and 𝐰 ∈ W.

SOME ALGORITHMS OF THE BEST SIMULTANEOUS APPROXIMATION

  • Rhee, Hyang J.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.141-148
    • /
    • 2009
  • We consider various algorithms calculating best onesided simultaneous approximations. We assume that X is a compact subset of $\mathbb{R}^{m}$ satisfying $X=\overline{intX}$, S is an n-dimensional subspace of C(X), and $\mu$ is any 'admissible' measure on X. For any l-tuple $f_1,\;{\cdots},\;f_{\ell}$ in C(X), we present various ideas for best approximation to F from S(F). The problem of best (both one and two-sided) approximation is a linear programming problem.

  • PDF