• Title/Summary/Keyword: two-scale modeling

Search Result 326, Processing Time 0.066 seconds

Gas Migration in Low- and Intermediate-Level Waste (LILW) Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설 폐쇄후 기체이동)

  • Ha, Jaechul;Lee, Jeong-Hwan;Jung, Haeryong;Kim, Juyub;Kim, Juyoul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • The first Low- and Intermediate-Level Waste (LILW) disposal facility with 6 silos has been constructed in granite host rock saturated with groundwater in Korea. A two-dimensional numerical modeling on gas migration was carried out using TOUGH2 with EOS5 module in the disposal facility. Laboratory-scale experiments were also performed to measure the important properties of silo concrete related with gas migration. The gas entry pressure and relative gas permeability of the concrete was determined to be $0.97{\pm}0.15bar$ and $2.44{\times}10^{-17}m^2$, respectively. The results of the numerical modeling showed that hydrogen gas generated from radioactive wastes was dissolved in groundwater and migrated to biosphere as an aqueous phase. Only a small portion of hydrogen appeared as a gas phase after 1,000 years of gas generation. The results strongly suggested that hydrogen gas does not accumulate inside the disposal facility as a gas phase. Therefore, it is expected that there would be no harmful effects on the integrity of the silo concrete due to gas generation.

Limitations of Applying Land-Change Models for REDD Reference Level Setting: A Case Study of Xishuangbanna, Yunnan, China (REDD 기준선 설정 시 토지이용변화 예측모형 적용의 한계: 중국 운남성 시솽반나 열대림 사례를 중심으로)

  • Kim, Oh Seok
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.3
    • /
    • pp.277-287
    • /
    • 2015
  • This paper addresses limitations of land-change modeling application in the context of REDD (Reducing Emissions from Deforestation and forest Degradation). REDD is an international conservation policy that aims to protect forests via carbon credit generation and trading. In REDD, carbon credits are generated only if there is measurable quantied carbon sequestration activities that are additional to business-as-usual (BAU). A "reference level" is defined as simulated baseline carbon emissions for the future under a BAU scenario, and predictive land-change modeling plays an important role in constructing reference levels. It is tested in this research how predictive accuracies of two land-change models, namely Geographic Emission Benchmark (GEB) and GEOMOD, vary with respect to different spatial scales: Xishuangbanna prefecture and Yunnan province. The accuracies are measured by Figure of Merit. In this Chinese case study, it turns out that GEB's better performance is mainly due to quantity (e.g., how many hectares of forest will be converted to agricultural land?) rather than spatial allocation (e.g., where will the conversion happen?). As both quantity and allocation are crucial in REDD reference level setting it appears to be fundamental to systematically analyze accuracies of quantity and allocation independently in pursuit of accurate reference levels.

  • PDF

Hierarchical Finite-Element Modeling of SiCp/Al2124-T4 Composites with Dislocation Plasticity and Size-Dependent Failure (전위 소성과 크기 종속 파손을 고려한 SiCp/Al2124-T4 복합재의 계층적 유한요소 모델링)

  • Suh, Yeong-Sung;Kim, Yong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.187-194
    • /
    • 2012
  • The strength of particle-reinforced metal matrix composites is, in general, known to be increased by the geometrically necessary dislocations punched around a particle that form during cooling after consolidation because of coefficient of thermal expansion (CTE) mismatch between the particle and the matrix. An additional strength increase may also be observed, since another type of geometrically necessary dislocation can be formed during extensive deformation as a result of the strain gradient plasticity due to the elastic-plastic mismatch between the particle and the matrix. In this paper, the magnitudes of these two types of dislocations are calculated based on the dislocation plasticity. The dislocations are then converted to the respective strengths and allocated hierarchically to the matrix around the particle in the axisymmetric finite-element unit cell model. The proposed method is shown to be very effective by performing finite-element strength analysis of $SiC_p$/Al2124-T4 composites that included ductile failure in the matrix and particlematrix decohesion. The predicted results for different particle sizes and volume fractions show that the length scale effect of the particle size obviously affects the strength and failure behavior of the particle-reinforced metal matrix composites.

An experimental study of smoke extraction efficiency along with ventilation building location in the mad tunnel (도로터널 내 환기소 위치별 방재 효율에 관한 실험적 연구)

  • Rie, Dong-Ho;Kim, Ha-Young;Yoon, Chan-Hoon;Kim, Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.215-222
    • /
    • 2010
  • An experimental study was carried out on a reduced scale model tunnel to investigate the efficiency of disaster prevention at underground and ground ventilation equipments for the fire in road tunnels. Based on Froude modeling, the 1/50 scaled model tunnel (20 m long) was manufactured. The vertical shafts that are used in the analysis of efficiency of disaster prevention are the two models that had considered when the real tunnels are designed and the amounts of smoke exhaust are applied the miniature of the real tunnels' smoke exhaust, 560 and $280\;m^3/s$. As the result of analysis, it is the possible the emissions of the entire quantity of CO gas through the vertical shafts. In the ground ventilation equipments, the concentration of CO is discharged 2.23~2,73 ppm smaller than the underground ventilation equipments. And the temperature rise in the ground ventilation equipments is $0.53{\sim}0.94^{\circ}C$ lower than in the underground ventilation equipments because of a cooling effect of the surface of the tunnel wall. As a result of analysis of CO concentration and the temperature rise in the modeling ventilation equipment, the position of ground ventilation equipment is more effective than the underground ventilation equipment in disaster prevention measures.

Testing for Measurement Invariance of Fashion Brand Equity (패션브랜드 자산 측정모델의 등치테스트에 관한 연구)

  • Kim Haejung;Lim Sook Ja;Crutsinger Christy;Knight Dee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.12 s.138
    • /
    • pp.1583-1595
    • /
    • 2004
  • Simon and Sullivan(l993) estimated that clothing and textile related brand equity had the highest magnitude comparing any other industry category. It reflects that fashion brands reinforce the symbolic, social values and emotional characteristics being different from generic brands. Recently, Kim and Lim(2002) developed a fashion brand equity scale to measure a brand's psychometric properties. However, they suggested that additional psychometric tests were needed to compare the relative magnitude of each brand's equity. The purpose of this study was to recognize the psychometric constructs of fashion brand equity and validate Kim and Lim's fashion brand equity scale using the measurement invariance test of cross-group comparison. First, we identified the constructs of fashion brand equity using confirmatory factor analysis through structural equation modeling. Second, we compared the relative magnitude of two brands' equity using the measurement invariance test of multi-group simultaneous factor analysis. Data were collected at six major universities in Seoul, Korea. There were 696 usable surveys for data analysis. The results showed that fashion brand equity was comprised of 16 items representing six dimensions: customer-brand resonance, customer feeling, customer judgment, brand imagery, brand performance and brand awareness. Also, we could support the measurement invariance of two brands' equities by configural and metric invariance tests. There were significant differences in five constructs' mean values. The greatest difference was in customer feeling; the smallest, in customer judgment.

An Empirical Analysis of Influence of Corporate Entrepreneurship on Business Performance from the Viewpoint of SMEs' Growth (중소기업의 성장 관점에서 사내 기업가정신이 경영성과에 미치는 영향 실증분석)

  • Kim, Ki Woong;Kim, Moon Sun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.12 no.5
    • /
    • pp.13-28
    • /
    • 2017
  • Entrepreneurship is an important factor not only for start-ups, but also for scale-up of businesses. In other words, the two aspects of establishment and growth of businesses must be balanced through entrepreneurship. However, it is true that entrepreneurship has been biased toward the former in previous researches and government policies. Here in this research, the causal relationships between the entrepreneurial characteristics of Korean firms and the performance of the company, which is measured by proposal, activity, and business performance are examined as a growth perspective. Based on these relationships, a model describing the operating mechanism of corporate entrepreneurship is derived and policy implications are provided. In conducting research, the hypotheses on the interrelationship of variables are builded using '2016 Entrepreneurship Situation Survey(Corporate)' data from Korea Entrepreneurship Foundation and analyzed by structural equation modeling. In addition, the moderating effect according to the firm size and the mediating effect between entrepreneurship and business performance are analyzed. As a result of this research, the fact that entrepreneurship affects business performance is identified and it is necessary to prioritize corporate vision and strategy for enhancement of entrepreneurship. In particular, necessity of operating system for SMEs is confirmed considering SMEs' entrepreneurship level. The implications of this research are expected to be applied by the government in establishing policy direction to enhance corporate entrepreneurship of SMEs in the future.

  • PDF

Analysis of Streetscape Image in Cultural District Using Structural Equation Model (구조방정식을 이용한 문화예술의 거리의 가로경관 이미지 분석)

  • Kim, Myung Soo
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.137-147
    • /
    • 2014
  • PURPOSES : Daejeon is basically divided into an old downtown and a new downtown, and the recent relocation of the Chungcheongnam-do Provincial Government of Republic of Korea from the old downtown and the opening of governmental buildings in the new downtown as well have made this new downtown only densely populated with industrial and business facilities. Such changes in the downtowns have promoted the conditions of the new downtown while, consequently, dragging down the old downtown. Out of concern for those unbalanced developments of the two downtowns, Daejeon is now carrying out several city projects to revive the old downtown. In the light of that, as a part of the project to promote the old downtown, this study aims to conduct an evaluation on landscape of the culture and arts street in Daeheungdong which was built upon those ideas of a theme street project by Daejeon. METHODS : Based on the findings from the questionnaire not only on the components that would design the streetscape of the culture and arts street but also on the public satisfaction with the streetscape, the study defined how those changes in the components affect emotional factors of the pedestrians. In order to achieve the research goal, the study made changes in D/H ratio of the street structural components as well as the roadside trees. In terms of the questionnaire method, the study used the SD scale, and proceeded with its investigation through the frequency analysis, the principal component analysis (the factor analysis) and the structural equation model. RESULTS : According to the results from the factor analysis and the regression analysis, of those three factors, such as the openness, the comfortable sensation and the safety, the openness followed by the comfortable sensation and the safety was determined to have the most positive influence on the total satisfaction. The structural model analysis reported that the D/H and the structural components of the roadside trees and planting have a positive effect on the emotional image, and this emotional image also appeared to be positively related to the total satisfaction. CONCLUSIONS : This study looked into how the changes in the street structural components of the culture and arts street in Daeheungdong would affect the satisfaction with the streetscape, and finally confirmed that the D/H and the planting are what would have a positive effect on this satisfaction. What has been learned from this study will be the basic data to figure out how to promote and improve the culture and arts street in Daeheung-dong as this data will also help designing and developing of those specialized streets in other regions.

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

Development of a Hospital Foodservice Facility Plan and Model based on General Sanitation Standards and RACCP Guidelines (병원급식에 일반위생관리기준과 HACCP 제도 적용을 위한 시설모델 개발)

  • 이정숙;곽동경;강영재
    • Korean journal of food and cookery science
    • /
    • v.19 no.4
    • /
    • pp.477-492
    • /
    • 2003
  • The purposes of the study were to establish HACCP-based standards and guidelines for conducting a plan review to build, or renovate, hospital food service establishments, and ensure the safety of foodservice and reduce the risk of food borne illness. The scope of the study included suggestion for the planning of hospital foodservice facilities: layout, design, equipment and modeling. The results of this study can be summarized as follows: 1) The development of a foodservice facility plan based on the results of a survey, literature reviews and the results of interviews with foodservice managers from 9 general hospitals. This was composed of operational policies in foodservices, layout characteristics, space allocation, selection, design, specification standards for equipment and the construction principles of foodservice facilities. 2) Two foodservice facility models were developed, one for general hospitals with 900 beds (2,000 patients and 2,500 employee meals per day) and the other for general hospitals with 300 beds (600 patients and 650 employees meals per day). 3) The suggested kitchen space requirements for the foodservice facility models were 341.2 ㎡ (W 17,100mm x L 23,700mm) and 998.8㎡ (W 35,600mm x L 32,800mm) for the 300 and 900 beds hospitals, respectively, with both designs being rectangular. The space requirements for the equipment, in relation to the total operational area, in terms of ratios were 1:3.5 and 1:3.8 for the 300 and 900 beds hospitals, respectively. The recommended space allowances per bed for the developed foodservice facility models were 1.15 ㎡ and 1.11 ㎡ for the 300 and 900 beds hospitals, respectively, which were increased by more than 30% compared to those suggested in the precedent study, and considered appropriate for the implementation of the HACCP system. 4) The hospital foodservice facilities plans and models were developed based on the general sanitation standards, guidelines and the HACCP system, and included foodservice facility layout, product flow, physical separation between contaminated and sanitary areas, foodservice facility specifications with a 1/300 scale for a 300 bed, and a 1/400 scale for a 900 beds blueprint. 5) The main features of the developed foodservice facility plans and models were; physical separation between contaminated and sanitary areas to prevent cross contamination, product flow in one direction from the arrival of the raw material to the finished product, and separation of different work areas and the process of receiving & preparation of products, refrigeration & storage, cooking, assembly, cleaning & disinfection, employee areas and janitorial facilities. The proposed models from this study were presented as examples for those wanting to build, or renovate, their facility for the production of foods.

Model Test for the Determination of Distances between Jet-fans and Analysis of Recirculation (제트팬 설치 간격과 재유입 현상 분석을 위한 모형실험)

  • Kweon, Oh-Sang;Yoon, Chan-Hoon;Yoon, Sung-Wook;Kim, Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.335-344
    • /
    • 2006
  • The domestic standards which used the standards of Road Association of Japan standards presents the distances of between jet-fans by the caliber of jet-fan. However, the Permanent International Association of Road Congress (PIARC) encourages it to be ten times a diameter of the tunnel. The distance of jet-fans installed in bases of two standards differs as much as two times, as so the proper basis after analysis of internal air current is needed since such difference can lead to disadvantage for selection of ventilation configuration. Based on Froude modeling theory, 1/40 scale acrylic model of a tunnel (215mm in diameter and 6.9m in length) and jet-fan (26.3mm and 31.6mm in caliber) was made for the measurement of changes in pressure and velocity due to the extension of tunnel for analysis of internal air current. And we measured the changes in pressure of surroundings of a jet-fan for confirmation of recirculation due to the exterior airs when the jet-fan is on. The results of the model test show that internal air current was not influenced by the caliber of jet-fan and its changes in pressure and velocity were stable in the point where it was nine times of diameter of the tunnel. Also the recirculation when the jet-fan is on could be verified. According to such results, in the cases of installing jet-fan in tunnels, the distances between jet-fans needs to be more than nine times the diameter.