• Title/Summary/Keyword: two-scale modeling

Search Result 326, Processing Time 0.03 seconds

Three-Dimensional Active Shape Models for Medical Image Segmentation (의료영상 분할을 위한 3차원 능동 모양 모델)

  • Lim, Seong-Jae;Jeong, Yong-Yeon;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.55-61
    • /
    • 2007
  • In this paper, we propose a three-dimensional(3D) active shape models for medical image segmentation. In order to build a 3D shape model, we need to generate a point distribution model(PDM) and select corresponding landmarks in all the training shapes. The manual determination method, two-dimensional(2D) method, and limited 3D method of landmark correspondences are time-consuming, tedious, and error-prone. In this paper, we generate a 3D statistical shape model using the 3D model generation method of a distance transform and a tetrahedron method for landmarking. After generating the 3D model, we extend the shape model training and gray-level model training of 2D active shape models(ASMs) and we use the integrated modeling process with scale and gray-level models for the appearance profile to represent the local structure. Experimental results are comparable to those of region-based, contour-based methods, and 2D ASMs.

An Ultra-precision Lathe for Large-area Micro-structured Roll Molds (대면적 미세패턴 롤 금형 가공용 초정밀 롤 선반 개발)

  • Oh, Jeong Seok;Song, Chang Kyu;Hwang, Jooho;Shim, Jong Youp;Park, Chun Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1303-1312
    • /
    • 2013
  • We report an ultra-precision lathe designed to machine micron-scale features on a large-area roll mold. The lathe can machine rolls up to 600 mm in diameter and 2,500 mm in length. All axes use hydrostatic oil bearings to exploit the high-precision, stiffness, and damping characteristics. The headstock spindle and rotary tooling table are driven by frameless direct drive motors, while coreless linear motors are used for the two linear axes. Finite element method modeling reveals that the effects of structural deformation on the machining accuracy are less than $1{\mu}m$. The results of thermal testing show that the maximum temperature rise at the spindle outer surface is approximately $0.5^{\circ}C$. Finally, performance evaluations of the error motion, micro-positioning capability, and fine-pitch machining demonstrate that the lathe is capable of producing optical-quality surfaces with micron-scale patterns with feature sizes as small as $20{\mu}m$ on a large-area roll mold.

An Inversion Package for Interpretation of Microgravity Data (고정밀 중력탐사 자료 역산 패키지)

  • Park, Yeong-Sue;Rim, Hyoungrea;Lim, Mutaek;Chung, Hojoon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.4
    • /
    • pp.226-231
    • /
    • 2017
  • Since microgravity survey aims to delineate subsurface density structures in small scale, it requires inversion method, which is able to resolve small scale structures. It can be achieved by adopting a stabilizing functional which separates density boundary distinctly, which is different concept from general inversion routines. We composed Matlab-based interactive two-dimensional microgravity data inversion package containing several kinds of inversion routines with different stabilizing functional, for handling various geologic conditions and survey purposes. Different kinds of inversion routines in the package were verified and examined with representative synthetic data sets generated by numerical modeling. In addition, we applied the developed package to a real microgravity survey data.

Estimation of Aerosol Vertical Profile from the MODIS Aerosol Optical Thickness and Surface Visibility Data (MODIS 에어러솔 광학두께와 지상에서 관측된 시정거리를 이용한 대기 에어러솔 연직분포 산출)

  • Lee, Kwon-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • This study presents a modeling of aerosol extinction vertical profiles in Korea by using the Moderate Resolution Imaging Spectro-radiometer(MODIS) derived aerosol optical thickness(AOT) and ground based visibility observation data. The method uses a series of physical equations for the derivation of aerosol scale height and vertical profiles from MODIS AOT and surface visibility data. The modelled results under the standard atmospheric condition showed small differences with the standard aerosol vertical profile used in the radiative transfer model. Model derived aerosol scale heights for two cases of clean(${\tau}_{MODIS}=0.12{\pm}0.07$, visibility=$21.13{\pm}3.31km$) and hazy atmosphere(${\tau}_{MODIS}=1.71{\pm}0.85$, visibility=$13.33{\pm}5.66km$) are $0.63{\pm}0.33km$ and $1.71{\pm}0.84km$. Based on these results, aerosol extinction profiles can be estimated and the results are transformed into the KML code for visualization of dataset. This has implications for atmospheric environmental monitoring and environmental policies for the future.

A one-dimensional model for impact forces resulting from high mass, low velocity debris

  • Paczkowski, K.;Riggs, H.R.;Naito, C.J.;Lehmann, A.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.831-847
    • /
    • 2012
  • Impact from water-borne debris during tsunami and flood events pose a potential threat to structures. Debris impact forces specified by current codes and standards are based on rigid body dynamics, leading to forces that are dependent on total debris mass. However, shipping containers and other debris are unlikely to be rigid compared to the walls, columns and other structures that they impact. The application of a simple one-dimensional model to obtain impact force magnitude and duration, based on acoustic wave propagation in a flexible projectile, is explored. The focus herein is on in-air impact. Based on small-scale experiments, the applicability of the model to predict actual impact forces is investigated. The tests show that the force and duration are reasonably well represented by the simple model, but they also show how actual impact differs from the ideal model. A more detailed three-dimensional finite element model is also developed to understand more clearly the physical phenomena involved in the experimental tests. The tests and the FE results reveal important characteristics of actual impact, knowledge of which can be used to guide larger scale experiments and detailed modeling. The one-dimensional model is extended to consider water-driven debris as well. When fluid is used to propel the 1-D model, an estimate of the 'added mass' effect is possible. In this extended model the debris impact force depends on the wave propagation in the two media, and the conditions under which the fluid increases the impact force are discussed.

Reduced-Scale Experiments of the Partial Smoke Extraction System in Tunnel Fires (풀화재를 이용한 터널화재 부분배연 모델실험)

  • Lee, Eui-Ju;Yoo, Yong-Ho
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.58-64
    • /
    • 2006
  • Smoke extraction in tunnel fire is investigated experimently with thermal model. The object is a immersed tunnel, of which the partial extraction system exists between the tubes. The model tunnel is measured 12 m long, 0.5 m wide and 0.35 m high. The fire is simulated to pool fire and the size corresponds to full scale fire of 5 MW based on Froude modeling. The performance of partial extraction system is determined under two ventilations, natural and longitudinal ones. The results show that compared with longitudinal ventilation, the smoke extraction efficiency of natural ventilation is increased about 30% because of smoke stratification in tunnel. Also the efficiency is identical to the iso-thermal model. The results will be help for activation of the ventilation system in emergency such as in the event of tunnel fires.

The effects of activated cooler power on the transient pressure decay and helium mixing in the PANDA facility

  • Kapulla, R.;Paranjape, S.;Fehlmann, M.;Suter, S.;Doll, U.;Paladino, D.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2311-2320
    • /
    • 2022
  • The main outcomes of the experiments H2P6 performed in the thermal-hydraulics large-scale PANDA facility at PSI in the frame of the OECD/NEA HYMERES-2 project are presented in this article. The experiments of the H2P6 series consists of two PANDA tests characterized by the activation of three (H2P6_1) or one (H2P6_2) cooler(s) in an initially stratified and pressurized containment atmosphere. The initial stratification is defined by a helium-rich region located in the upper part of the vessel and a steam/air atmosphere in the lower part. The activation of the cooler(s) results i) in the condensation of the steam in the vicinity of the cooler(s), ii) the corresponding activation of large scale natural circulation currents in the vessel atmosphere, with the result of iii) the re-distribution and mixing of the Helium stratification initially located in the upper half of the vessel and iv) the continuous pressure decay. The initial helium layer represents hydrogen generated in a postulated severe accident. The main question to be answered by the experiments is whether or not the interaction of the different, localized cooler units would be important for the application of numerical methods. The paper describes the initial and boundary conditions and the experimental results of the H2P6 series with the suggestion of simple scaling laws for both experiments in terms of i) the temperature difference(s) across the cooler(s), ii) the transient steam and helium content and iii) the pressure decay in the vessel. The outcomes of this scaling indicate that the interaction between separate, closely localized units does not play a prominent role for the present experiments. It is therefore reasonable to model several units as one large component with equivalent heat transfer area and total water flow rate.

Size-dependent free vibration of coated functionally graded graphene reinforced nanoplates rested on viscoelastic medium

  • Ali Alnujaie;Ahmed A. Daikh;Mofareh H. Ghazwani;Amr E. Assie;Mohamed A Eltaher
    • Advances in nano research
    • /
    • v.17 no.2
    • /
    • pp.181-195
    • /
    • 2024
  • This study introduces a novel functionally graded material model, termed the "Coated Functionally Graded Graphene-Reinforced Composite (FG GRC)" model, for investigating the free vibration response of plates, highlighting its potential to advance the understanding and application of material property variations in structural engineering. Two types of coated FG GRC plates are examined: Hardcore and Softcore, and five distribution patterns are proposed, namely FG-A, FG-B, FG-C, FG-D, and FG-E. A modified displacement field is proposed based on the higher-order shear deformation theory, effectively reducing the number of variables from five to four while accurately accounting for shear deformation effects. To solve the equations of motion, an analytical solution based on the Galerkin approach was developed for FG GRC plates resting on a viscoelastic Winkler/Pasternak foundation, applicable to various boundary conditions. A comprehensive parametric analysis elucidates the impact of multiple factors on the fundamental frequencies. These factors encompass the types and distribution patterns of the coated FG GRC plates, gradient material distribution, porosities, nonlocal length scale parameter, gradient material scale parameter, nanoplate geometry, and variations in the elastic foundation. Our theoretical research aims to overcome the inherent challenges in modeling structures, providing a robust alternative to experimental analyses of the mechanical behavior of complex structures.

A Two Dimensional in Bended Open Channel Flows (만곡수로에서 2차원 흐름해석)

  • Yoon, Sei Eui;Lee, Jong Tae;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.87-94
    • /
    • 1986
  • Under natural condition, many rivers had shallow and gently curved shape in plane. A two dimensional mathematical model of the flow was a very attractive one. The flow characteristics in bended open channels were analyzed. The mathematical model based on the mass and the momentum equation of the two-dimensional unsteady flow was developed by introducing finite difference method and the double sweep algorithm. For the purpose of the verification of this model, the modeling results were applied to the L.F.M flume and the I.I.H.R flume. The results had a good agreement with the experimental data of the flumes. The results could be more close to the experimental data by controlling Chezy Coefficients in order to reduce the effect of friction around side wall, and be studied the importance of the convective term. The water surface profile, the direction and scale of depth average mean velocity and the path of the thread of maximum velocity in bended open channels could be computed.

  • PDF

Sensitivity analysis of input variables to establish fire damage thresholds for redundant electrical panels

  • Kim, Byeongjun;Lee, Jaiho;Shin, Weon Gyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.84-96
    • /
    • 2022
  • In the worst case, a temporary ignition source (also known as transient combustibles) between two electrical panels can damage both panels. Mitigation strategies for electrical panel fires were previously developed using fire modeling and risk analysis. However, since they do not comply with deterministic fire protection requirements, it is necessary to analyze the boundary values at which combustibles may damage targets depending on various factors. In the present study, a sensitivity analysis of input variables related to the damage threshold of two electrical panels was performed for dimensionless geometry using a Fire Dynamics Simulator (FDS). A new methodology using a damage evaluation map was developed to assess the damage of the electrical panel. The input variables were the distance between the electrical panels, the vertical height of the fuel, the size of the fire, the wind speed and the wind direction. The heat flux was determined to increase as the vertical distance between the fuel and the panel decreased, and the largest heat flux was predicted when the vertical separation distance divided by one half flame length was 0.3-0.5. As the distance between the panels increases, the heat flux decreases according to the power law, and damage can be avoided when the distance between the fuel and the panel is twice the length of the panel. When the wind direction is east and south, to avoid damage to the electrical panel the distance must be increased by 1.5 times compared to no wind. The present scale model can be applied to any configuration where combustibles are located between two electrical panels, and can provide useful guidance for the design of redundant electrical panels.