• Title/Summary/Keyword: two-phase mixing

Search Result 186, Processing Time 0.023 seconds

Effect of Gas-liquid Ratio on Characterization of Two-Phase Spray Injected into a Cross-flow (횡단유동에 분사된 이유체 분무의 기체 액체비가 분무특성에 미치는 영향)

  • Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Su;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • The effect of two-phase spray injected into subsonic cross-flow was studied experimentally. External-mixing of two-phase spray from orifice nozzle with L/d of 3 was tested with various air-liquid ratio that ranges from 0 to 59.4%. Trajectory of spray and breakup phenomena were investigated by shadowgraph photography. Detailed spray structure was characterized in terms of SMD, droplet velocity, and volume flux using PDPA. Experimental results indicate that penetration length was increased and collision point of liquid jets approached to nozzle exit and distributions of mist-like spray were obtained by increasing air-liquid ratio.

Development, validation and implementation of multiple radioactive particle tracking technique

  • Mehul S. Vesvikar;Thaar M. Aljuwaya;Mahmoud M. Taha;Muthanna H. Al-Dahhan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4213-4227
    • /
    • 2023
  • Computer Automated Radioactive Particle Tracking (CARPT) technique has been successfully utilized to measure the velocity profiles and mixing parameters in different multiphase flow systems where a single radioactive tracer is used to track the tagged phase. However, many industrial processes use a wide range of particles with different physical properties where solid particles could vary in size, shape and density. For application in such systems, the capability of current single tracer CARPT can be advanced to track more than one particle simultaneously. Tracking multiple particles will thus enable to track the motion of particles of different size shape and density, determine segregation of particles and probing particle interactions. In this work, a newly developed Multiple Radioactive Particle Tracking technique (M-RPT) used to track two different radioactive tracers is demonstrated. The M-RPT electronics was developed that can differentiate between gamma counts obtained from the different radioactive tracers on the basis of their gamma energy peak. The M-RPT technique was validated by tracking two stationary and moving particles (Sc-46 and Co-60) simultaneously. Finally, M-RPT was successfully implemented to track two phases, solid and liquid, simultaneously in three phase slurry bubble column reactors.

Analysis of two phase thrbulent flow in pipe with suspension of solid particles (고체분말이 부상된 이상난류 관유동의 해석)

  • ;;Chung, Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.3
    • /
    • pp.159-169
    • /
    • 1981
  • The mixing length theory is extended to close the momentum queations for two-phase turbulent flow at a first-order closure level. It is assumed that the mass fraction of the particles is of the order of unity, that the particle size is so small that the particles are fully suspended is the primary fluid, and that the relaxation time scale of the particles is of the same order as the time scale of the energy containing eddies so that the suspended particles are responsive to the fluctuating turbulent field. The bulk motion of the particles is treated as a secondary fluid with its own coefficient of momentum transport. The proposed closure is uniformly destributed acress the pipe section. Predicted velocity profiles and the friction factors are in good agreement with avaiable experimental data.

Simultaneous optical ignition and spectroscopy of a two-phase spray flame for feedback control System (이상상태 분무 화염에서의 레이저 점화 및 분광 측정을 통한 피드백 제어 연구)

  • Lee, Seok Hwan;Kim, Hyunwoo;Do, Hyungrok;Yoh, Jack J.
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.215-218
    • /
    • 2015
  • Simultaneous laser ignition and spectroscopy is a scheme that enables rapid determination of the local equivalence ratio and condensed fuel concentration during a reaction in a two phase spray flame. We have conducted quantitative analysis of the LIBS signals according to the equivalence ratio, droplet size, droplet number density and droplet concentration as a part of novel feedback control strategy proposed for flame ignition and stabilization with simultaneous in situ combustion flow diagnostics. This is a desirable scheme since such real time information onboard an engine for instance can be constantly monitored and fed back to the control loop to enhance the mixing process and minimize emissions of unwanted species and potential combustion instability.

  • PDF

Quadrature VCO as a Subharmonic Mixer

  • Oh, Nam-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.81-88
    • /
    • 2021
  • This paper proposes two types of subharmonic RF receiver front-end (called LMV) where, in a single stage, quadrature voltage-controlled oscillator (QVCO) is stacked on top of a low noise amplifier. Since the QVCO itself plays the role of the single-balanced subharmonic mixer with the dc current reuse technique by stacking, the proposed topology can remove the RF mixer component in the RF front-end and thus reduce the chip size and the power consumption. Another advantage of the proposed topologies is that many challenges of the direct conversion receiver can be easily evaded with the subharmonic mixing in the QVCO itself. The intermediate frequency signal can be directly extracted at the center taps of the two inductors of the QVCO. Using a 65 nm complementary metal oxide semiconductor (CMOS) technology, the proposed subharmonic RF front-ends are designed. Oscillating at around 2.4 GHz band, the proposed subharmonic LMVs are compared in terms of phase noise, voltage conversion gain and double sideband noise figure. The subharmonic LMVs consume about 330 ㎼ dc power from a 1-V supply.

Partial Miscibilities in Binary Solutions with Two Kinds of Specific Interactions (두 종류의 특정상호작용을 갖는 이성분 용액의 부분 혼합도)

  • Jung, Hae-Young
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.2
    • /
    • pp.111-117
    • /
    • 2016
  • In this article, new Gibbs free energy of mixing is derived when there are specific interactions between solvent-solute molecules and between solute-solute molecules in binary solutions. It is asssumed that a probability of specific interactions satisfies a binomial distribution. Using this Gibbs free energy of mixing, we investigate possible types of partial miscibilities and show that Ω-shaped temperature-composition phase diagrams can exist. We calculate Ω-shaped temperature-composition phase diagram of water-2-butanol system and compare that with result calculated by the method of Hino5 et al. and the experimental data.

The Effects of a Chain Extending Agent and Crosslinking Agent on the Toughness of Castor Oil based Polyurethane-Epoxy IPNs (Castor Oil형 폴리우레탄-에폭시 IPNs에서 사슬연장제와 가교제의 영향에 의한 강인성)

  • Kim, Jong-Seok;Yang, Yeong-Seok
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.639-643
    • /
    • 1999
  • Interpenetrating polymer networks(IPNs) composed of castor oil(CO) polyurethane(PU) and epoxy resin were prepared by the simultaneous polymerization technique. Two types of PU were prepared using 1,4-butanediol(BD) and BD/trimethylolpropane(TMP) as a chain extending agent and crosslinking agent. The PU/epoxy based on BD as a chain extending agent showed more shift in the damping peak than PU/epoxy based on BD/TMP as the PU content was increased. BDPU/epoxy simultaneous interpenetrating polymer networks(SINs) had a better compatibility than BD/TMP-PU/epoxy SINs. For both systems, it was postulated that unique network formation of PU/epoxy SINs as a chain extending agent and crosslinking agent had occurred to a significant extent of phase mixing. The types of chain extender in the PU were found to be an important factor in determining the phase mixing of the IPNs. When the BD/TMP-PU reaction was faster than epoxy network, the extent of phase mixing was retarded by decreasing entanglement of networks. It was found that both PU/epoxy SINs provided enhanced flexural properties and fracture toughness, fracture surfaces of BDPU/epoxy and BD/TMP-PU/epoxy SINs showed the localized shear deformation and generation of stress whitening associated with the cavitation.

  • PDF

Generation of Coherent Sub-Terahertz Carrier with Phase Stabilization for Wireless Communications

  • Yoshimizu, Yasuyuki;Hisatake, Shintaro;Kuwano, Shigeru;Terada, Jun;Yoshimoto, Naoto;Nagatsuma, Tadao
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.569-575
    • /
    • 2013
  • In this paper, we present a photonic approach for generating highly stable coherent sub-terahertz (THz) signals for wireless communications. As proof-of-concept we transmit data at 100 GHz carrier frequency using on-off keying modulation and heterodyne detection. The sub-THz carrier signals are generated by photo-mixing two optical carrier signals at different frequencies, extracted from an optical frequency comb. We introduce a novel system to stabilize the phase of the optical carrier signals. Error-free transmission is successfully achieved up to a bit rate of 8.5 Gbit/s at 100 GHz.

EFFECT OF VALVE TIMING AND LIFT ON FLOW AND MIXING CHARACTERISTICS OF A CAI ENGINE

  • Kim, J.N.;Kim, H.Y.;Yoon, S.S.;Sa, S.D.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.687-696
    • /
    • 2007
  • To increase the reliability of auto-ignition in CAI engines, the thermodynamic properties of intake flow is often controlled using recycled exhaust gases, called internal EGR. Because of the internal EGR influence on the overall thermodynamic properties and mixing quality of the gases that affect the subsequent combustion behavior, optimizing the intake and exhaust valve timing for the EGR is important to achieve the reliable auto-ignition and high thermal efficiency. In the present study, fully 3D numerical simulations were carried out to predict the mixing characteristics and flow field inside the cylinder as a function of valve timing. The 3D unsteady Eulerian-Lagrangian two-phase model was used to account for the interaction between the intake air and remaining internal EGR during the under-lap operation while varying three major parameters: the intake valve(IV) and exhaust valve(EV) timings and intake valve lift(IVL). Computational results showed that the largest EVC retardation, as in A6, yielded the optimal mixing of both EGR and fuel. The IV timing had little effect on the mixing quality. However, the IV timing variation caused backflow from the cylinder to the intake port. With respect to reduction of heat loss due to backflow, the case in B6 was considered to present the optimal operating condition. With the variation of the intake valve lift, the A1 case yielded the minimum amount of backflow. The best mixing was delivered when the lift height was at a minimum of 2 mm.

Numerical Study of Agitation Performance in the Mud Tank of On-shore Drilling (육상 시추용 머드탱크의 교반성능에 대한 수치해석적 연구)

  • Hwang, Jong-Duck;Ku, Hak-Keun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.617-626
    • /
    • 2020
  • The drilling mud is essentially used in oil and gas development. There are several roles of using the drilling mud, such as cleaning the bottomhole, cooling and lubricating the drill bit and string, transporting the cuttings to the surface, keeping and adjusting the wellbore pressure, and preventing the collapse of the wellbore. The fragments from rocks and micro-sized bubbles generated by the high pressure are mixed in the drilling mud. The systems to separate those mixtures and to keep the uniformly maintained quality of drilling mud are required. In this study, the simulation is conducted to verify the performance of the mud tank's agitation capacity. The primary role of the mud tank is the mixing of mud at the surface with controlling the mud condition. The container type is chosen as a mud tank pursuing efficient transport and better management of equipment. The single- and two-phase simulations about the agitation in the mud tank are performed to analyze and identify the inner flow behavior. The convergence of results is obtained for the vertical- and axis-direction velocity vector fields based on the grid-dependency tests. The mixing time analysis depending on the multiphase flow conditions indicates that the utilization of a two-stepped impeller with a smaller size provides less time for mixing. This study's results are expected to be utilized as the preliminary data to develop the mixing and integrating equipment of the onshore drilling mud system.