• 제목/요약/키워드: two-phase fluid

검색결과 669건 처리시간 0.03초

Partition method of wall friction and interfacial drag force model for horizontal two-phase flows

  • Hibiki, Takashi;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1495-1507
    • /
    • 2022
  • The improvement of thermal-hydraulic analysis techniques is essential to ensure the safety and reliability of nuclear power plants. The one-dimensional two-fluid model has been adopted in state-of-the-art thermal-hydraulic system codes. Current constitutive equations used in the system codes reach a mature level. Some exceptions are the partition method of wall friction in the momentum equation of the two-fluid model and the interfacial drag force model for a horizontal two-phase flow. This study is focused on deriving the partition method of wall friction in the momentum equation of the two-fluid model and modeling the interfacial drag force model for a horizontal bubbly flow. The one-dimensional momentum equation in the two-fluid model is derived from the local momentum equation. The derived one-dimensional momentum equation demonstrates that total wall friction should be apportioned to gas and liquid phases based on the phasic volume fraction, which is the same as that used in the SPACE code. The constitutive equations for the interfacial drag force are also identified. Based on the assessments, the Rassame-Hibiki correlation, Hibiki-Ishii correlation, Ishii-Zuber correlation, and Rassame-Hibiki correlation are recommended for computing the distribution parameter, interfacial area concentration, drag coefficient, and relative velocity covariance of a horizontal bubbly flow, respectively.

평관형 및 나선 그루브형 열사이폰 내부 작동유체의 포화온도와 단열부의 표면온도에 관한 연구 (A Comparison between the Internal Saturation Temperature of Working Fluid and the Surface Temperature of Adiabatic Zone of Two-Phase Closed Thermosyphons with Various Helical Grooves)

  • 한규일;조동현;박종운;이상진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1243-1249
    • /
    • 2004
  • This study is focused on the comparison between the internal saturation temperature of the working fluid and the surface temperature of adiabatic zone of two-phase closed thermosyphons with various helical grooves. Distilled water, methanol and ethanol have been used as the working fluid. In the present work, a copper tube of the length of 1200mm and 14.28mm of inside diameter is used as the container of the thermosyphon. Each of the evaporator and the condenser section has a length of 550mm, while the remaining part of the thermosyphon tube is adiabatic section. A experimental study was carried out for analyzing the performances of having 50, 60, 70, 80, 90 helical grooves. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphons is also tested for the comparison. The results show that the numbers of grooves and the type of working fluids are very important factors for the operation of thermosyphons. A good agreement between the internal saturation temperature of working fluid and the surface temperature of adiabatic zone of two-phase closed thermosyphons with various helical grooves is obtained.

  • PDF

Calculation of Temperature Rise in Gas Insulated Busbar by Coupled Magneto-Thermal-Fluid Analysis

  • Kim, Hong-Kyu;Oh, Yeon-Ho;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.510-514
    • /
    • 2009
  • This paper presents the coupled analysis method to calculate the temperature rise in a gas insulated busbar (GIB). Harmonic eddy current analysis is carried out and the power losses are calculated in the conductor and enclosure tank. Two methods are presented to analyze the temperature distribution in the conductor and tank. One is to solve the thermal conduction problem with the equivalent natural convection coefficient and is applied to a single phase GIB. The other is to employ the computational fluid dynamics (CFD) tool which directly solves the thermal-fluid equations and is applied to a three-phase GIB. The accuracy of both methods is verified by the comparison of the measured and calculated temperature in a single phase and three-phase GIB.

과도상태 2상유동 해석을 위한 비정렬.비엇갈림 격자 SMAC 알고리즘 (AN EXTENSION OF THE SMAC ALGORITHM FOR THERMAL NON-EQUILIBRIUM TWO-PHASE FLOWS OVER UNSTRUCTURED NON-STAGGERED GRIDS)

  • 박익규;윤한영;조형규;김종태;정재준
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.51-61
    • /
    • 2008
  • The SMAC (Simplified Marker And Cell) algorithm is extended for an application to thermal non-equilibrium two-phase flows in light water nuclear reactors (LWRs). A two-fluid three-field model is adopted and a multi-dimensional unstructured grid is used for complicated geometries. The phase change and the time derivative terms appearing in the continuity equations are implemented implicitly in a pressure correction equation. The energy equations are decoupled from the momentum equations for faster convergence. The verification of the present numerical method was carried out against a set of test problems which includes the single and the two-phase flows. The results are also compared to those of the semi-implicit ICE method, where the energy equations are coupled with the momentum equation for pressure correction.

Fluid Bounding Effect on Natural Frequencies of Fluid-Coupled Circular Plates

  • Jhung, Myung-Jo;Park, Young-Hwan;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1297-1315
    • /
    • 2003
  • This study deals with the free vibration of two identical circular plates coupled with a bounded or unbounded fluid. An analytical method based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method is suggested. The proposed method is verified by the finite element analysis using commercial program with a good accuracy The case of bounded or unbounded fluid is studied for the effect on the vibration characteristics of two circular plates. Also, the effect of gap between the plates on the fluid-coupled natural frequencies is investigated.

다공성 매질이 존재하는 용광로 내부 이상유체 경계면의 특성 (CHARACTERISTICS OF INTERFACE BETWEEN TWO-PHASE FLUIDS FLOW IN A FURNACE WITH POROUS MEDIUM)

  • 박경민;이동조;이정호;윤현식
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.110-116
    • /
    • 2016
  • The present study numerically investigated the deformation of the interface of two-phase fluids flow in a blast furnace. To simulate three-dimensional(3D) incompressible viscous two-phase flow in the furnace filled with the air and molten iron, the volume of fluid(VOF) method based on the finite volume method has been utilized. In addition, the porous medium with the porosity has been considered as the bed of the particles such as cokes and char etc. For the comparison, the single phase flow and the two-phase flow without the porosity have been simulated. The two-phase flow without porosity condition revealed the smooth parabolic profile of the free surface near the outlet. However, the free surface under the porosity condition formed the viscous finger when the free surface was close to the outlet. This viscous finger accelerated the velocity of the free surface falling and the outflow velocity of the fluids near the outlet.

Salt-Induced Protein Precipitation in Aqueous Solution: Single and Binary Protein Systems

  • Kim, Sang-Gon;Bae, Young-Chan
    • Macromolecular Research
    • /
    • 제11권1호
    • /
    • pp.53-61
    • /
    • 2003
  • A molecular-thermodynamic model is developed for the salt-induced protein precipitation. The protein molecules interact through four intermolecular potentials. An equation of state is derived based on the statistical mechanical perturbation theory with the modified Chiew's equation for the fluid phase, Young's equation for the solid phase as the reference system and a perturbation based on the protein-protein effective two body potential. The equation of state provides an expression for the chemical potential of the protein. In a single protein system, the phase separation is represented by fluid-fluid equilibria. The precipitation behaviors are simulated with the partition coefficient at various salt concentrations and degree of pre-aggregation effect for the protein particles. In a binary protein system, we regard the system as a fluid-solid phase equilibrium. At equilibrium, we compute the reduced osmotic pressure-composition diagram in the diverse protein size difference and salt concentrations.

기액 이상류시의 스크류식 원심펌프의 압력분포 (Pressure Distributions of a Screw-type Centrifugal Pump Operating in Air-Water Two-Phase Flow)

  • 김유택;최민선;이영호
    • 한국유체기계학회 논문집
    • /
    • 제4권3호
    • /
    • pp.39-45
    • /
    • 2001
  • It is reported recently that the pump head deterioration near the best efficiency point, from single-phase flow to the choke due to air entrainment became less in a screw-type centrifugal pump than in a general centrifugal pump. Moreover, at a narrow tip clearance, the pump head became partially higher in two-phase flow than that in single-phase flow. However, the internal pressure fluctuations on this pump due to air entrainment have not been studied yet. For that reason, we have examined the influences of void fraction, flow coefficient and impeller tip clearance on pressure fluctuations in the casing. The void fraction became larger, the influence of tip clearance on pressure distribution became less.

  • PDF

Stratified Steady and Unsteady Two-Phase Flows Between Two Parallel Plates

  • Sim Woo-Gun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.125-132
    • /
    • 2006
  • To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated.

STATUS AND PERSPECTIVE OF TWO-PHASE FLOW MODELLING IN THE NEPTUNE MULTISCALE THERMAL-HYDRAULIC PLATFORM FOR NUCLEAR REACTOR SIMULATION

  • BESTION DOMINIQUE;GUELFI ANTOINE;DEN/EER/SSTH CEA-GRENOBLE,
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.511-524
    • /
    • 2005
  • Thermalhydraulic reactor simulation of tomorrow will require a new generation of codes combining at least three scales, the CFD scale in open medium, the component scale and the system scale. DNS will be used as a support for modelling more macroscopic models. NEPTUNE is such a new generation multi-scale platform developed jointly by CEA-DEN and EDF-R&D and also supported by IRSN and FRAMATOME-ANP. The major steps towards the next generation lie in new physical models and improved numerical methods. This paper presents the advances obtained so far in physical modelling for each scale. Macroscopic models of system and component scales include multi-field modelling, transport of interfacial area, and turbulence modelling. Two-phase CFD or CMFD was first applied to boiling bubbly flow for departure from nucleate boiling investigations and to stratified flow for pressurised thermal shock investigations. The main challenges of the project are presented, some selected results are shown for each scale, and the perspectives for future are also drawn. Direct Numerical Simulation tools with Interface Tracking Techniques are also developed for even smaller scale investigations leading to a better understanding of basic physical processes and allowing the development of closure relations for macroscopic and CFD models.