• Title/Summary/Keyword: two-metal system

Search Result 571, Processing Time 0.034 seconds

Temperature and Coverage Dependent Quasi-reversible Two-photon Photoemission of 1-phenyl-1-propyne on Cu(111)

  • Sohn, Young-Ku;Wei, Wei;Huang, Weixin;White, John M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1980-1984
    • /
    • 2011
  • A temperature- and coverage-dependant quasi-reversible change in two-photon photoemission (2PPE) of chemisorbed 1-phenyl-1-propyne (PP) on Cu(111) is reported. For PP on Cu(111) at 300 K probed at a photon energy of 4.13 eV, two broad peaks of comparable intensity show final state energies of 7.25 and 7.75 eV above the Fermi level. The former peak could be assigned to the first image potential state (IS, n = 1) and/or unoccupied molecular orbital (UMO), located at 3.1 eV above the Fermi level. The latter is plausibly attributed to a mix of unoccupied higher-order IS (and/or UMO) and occupied surface state (SS) of Cu(111). With decreasing the temperature, the former 2PPE peak shows a shift in position by about 0.2 eV, and the latter exhibits a dramatic increase in intensity. In the system, intermolecular interactions (and/or order-disorder transition) of PP and substrate lattice temperature may play a significant role in change in photoexcitation lifetime (or excitation cross-section), and the unoccupied molecular orbital (UMO)-metal (IS) charge transfer coupling. Our unique 2PPE results provide a deeper insight for understanding photoexcitation charge transfer with temperature in an organic molecule/metal system.

Two 3D CdII and ZnII Complexes Based on Flexible Dicarboxylate Ligand and Nitrogen-containing Pillar: Synthesis, Structure, and Luminescent Properties

  • Liu, Liu;Fan, Yan-Hua;Wu, Lan-Zhi;Zhang, Huai-Min;Yang, Li-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3749-3754
    • /
    • 2013
  • Two 3D isomorphous and isostructural complexes, namely, $[Zn(BDOA)(bpy)(H_2O)_2]_n$ (1) and $[Cd(BDOA)-(bpy)(H_2O)_2]_n$ (2); (BDOA = Benzene-1,4-dioxyacetic acid, bpy = 4,4'-bipyridine) were synthesized under hydrothermal conditions and characterized by means of elemental analyses, thermogravimetric (TG), infrared spectrometry, and single crystal X-ray diffraction. Complexes 1 and 2 crystallize in the triclinic system, space group P-1 and each metal ion in the complexes are six-coordinated with the same coordination environment. In the as-synthesized complexes, $BDOA^{2-}$ anions link central metal ions to form a 1D zigzag chain $[-BDOA^{2-}-Zn(Cd)-BDOA^{2-}-Zn(Cd)-]_{\infty}$, whereas bpy pillars connect metal ions to generate a 1D linear chain $[-bpy-Zn(Cd)-bpy-Zn(Cd)-]_{\infty}$. Both infinite chains are interweaved into 2D grid-like layers which are further constructed into a 3D open framework, where hydrogen bonds play as the bridges between the adjacent 2D layers. Luminescent properties of complex 1 showed selectivity for $Hg^{2+}$ ion.

Zeroth-Order Resonant Antenna with Frequency Reconfigurable Radiating Structures (주파수 재구성 가능한 방사 구조를 갖는 영차 공진 안테나)

  • Lee, Hongmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.12-20
    • /
    • 2013
  • In this paper, a co-planar waveguide(CPW) fed zeroth-order resonant(ZOR) antenna with frequency reconfigurable radiating structures is fabricated and measured. The unit cell of proposed antenna consists of a series metal-insulator-metal(MIM) capacitor and two shunt line inductors which are shorted through the via. The proposed antenna is designed based on a composite right/left-handed(CRLH) transmission line with two unit cells and it has open ended structure in order to radiate electromagnetic energy mainly on the shunt arm. In order to reduce the antenna size and to exhibit a frequency reconfigurable ability using diode switches four straight strips bent by 90 degrees are used as shunt inductors. The total size of fabricated antenna is $0.22{\lambda}_0{\times}0.16{\lambda}_0$ at zeroth-order resonant(ZOR) frequency. The measured maximum gain and bandwidth (VSWR ${\leq}2$) are 3.1 dBi and 56MHz at ZOR frequency of 2.97 GHz, respectively. This type of antenna can be applied to a frequency reconfigurable antenna system with triple bands.

Study on the Influence of Stray current Between Sacrificial Anode Cathodic Protection and Impressed Current Cathodic Protection in Marine Environment

  • Jeong, Jin-A;Kim, Ki-Joon
    • Corrosion Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.77-81
    • /
    • 2012
  • Cathodic protection(CP) is widely used as a means of protecting corrosion for not only marine structures like ship hulls and offshore drilling facilities, but also underground structures like buried pipelines and oil storage tanks. The principle of CP is that the anodic dissolution of metal can be protected by supplying electrons to the cathode metal. When unprotected structures are nearby to CP systems, interference problems between unprotected and protected structures may be happened. The stray current interference can accelerate the corrosion of nearby structures. So far many efforts have been made to reduce the interference in the electric railway systems adjacent to the underground metal structures like buried pipelines and gas/oil tanks. During recent few decades the protection technologies against stray current induced corrosion have been significantly improved and a number of techniques have been developed. However, there is very limited information an marine environments. Some complex harbor structures are protected by two cathodic protection systems, i.e. sacrificial anode cathodic protection(SACP) and impressed current cathodic protection(ICCP). In this case, when the protection current from sacrificial anodes returns to the cathode through electrolyte, it passes through nearby other low resistance metal structures. In many cases the stray current of ICCP systems influences the function of SACP. In this study, the risk of stray current from the SACP system to adjacent reinforced concrete structures has been verified through laboratory experiments. Concrete and steel pile structures modeled a part of bridge have been investigated in terms of CP potential and current between the two. The variation of stray current according to the magnitude of ICCP/SACP has been studied to mitigate it and to suggest the proper protection criteria.

Development of a Surface-Strain Measurement System Using the Image Processing Technique (화상처리법을 이용한 곡면변형률 측정 시스템의 개발)

  • Han, Sang-Jun;Kim, Yeong-Su;Kim, Hyeong-Jong;O, Su-Ik
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.575-585
    • /
    • 1998
  • An automated surface-strain measuring system using the image processing technique is developed in the present study which consists of the hardware to capture and to display digital images. and the software to calculate the 3-D informations of grid points from two views. New or improved algorithms for the mapping and establishing correspondence of grid points and elements the camera calibration and the subpixel measurement of grid points are implemented. As an application of the present system the surface-strains of deformed blanks in the limitting dome height test the square cup deep-drawing and punch stretching to obtain the forming limit diagram are measured. The results are com-pared with those obtained by conventional manual methods.

  • PDF

Metal-Support Interaction in Cu /${\gamma}$-$Al_2O_3 and Cu / TiO_2$ Systems (구리를 포함하는 ${\gamma}$-$Al_2O_3$$TiO_2$에서의 금속-담체 상호작용)

  • Mi-Kyeong Ju;Chong-Soo Han;Min-Soo Cho;Kae-Soo Rhee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.543-548
    • /
    • 1988
  • The metal-support interaction was studied in 1∼5wt% copper supported on $\gamma-alumina$ and titania systems by temperature programmed reduction (TPR) and EPR. When the samples were treated with oxygen at $500^{\circ}C$, the relative area of H2-TPR peak at higher temperature increased with copper content for titania system whereas that of lower temperature increased for ${\gamma}$-alumina system. After oxygen treatment at $500^{\circ}C,\;{\gamma}$-alumina system showed a TPR peak at $300^{\circ}C$ while two peaks at 120 and $180^{\circ}C$ were found in titania system. A typical $Cu^{2+}$ EPR signal was observed on ${\gamma}$-alumina but very broad and small one on titania. From the results, it was suggested that the metal-support interaction increases in the order of silica < titania < ${\gamma}$-alumina and copper oxide has different loading characteristics depending on the supports.

  • PDF

The effect of heat and press-on-metal technique on marginal fit of metal-ceramic crown (열가압성형도재의 사용이 금속도재관 치경부 변연적합도에 미치는 영향)

  • Kim, Ji-Eun;Kim, Se-Yeon;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.90-96
    • /
    • 2014
  • Purpose: The purpose of this study is to see what impact the heat and press-on-metal technique has on the marginal fit of metal ceramic crown. Materials and methods: Prior to the experiment, 4 metal master models were prepared. Each model has margin of chamfer, margin of heavy chamfer, margin of shoulder with bevel and margin of shoulder (collarless). Additionally, 10 crowns were made for each margin, total of 40 crowns. Marginal discrepancy between the master model and crown was observed at ${\times}100$ microscopic magnification in two states; in coping state and upon completion of making metal ceramic crown. Data analysis was performed using paired t-test along with one-way ANOVA and Duncan multiple comparison test. Results: After analyzing mean and standard deviation of marginal discrepancy, it was confirmed that marginal discrepancies were within the clinical permitted range for all states; in coping state and upon completion of making metal ceramic crown. For the chamfer group, a significant increase in marginal discrepancy upon completion of making metal ceramic crown was observed compared to the heavy chamfer group. Also, a marginal discrepancy of porcelain margin in shoulder group was significantly less than the marginal discrepancy of metal margin in chamfer and shoulder group. Conclusion: From the test result, one can conclude that marginal fit of metal ceramic crown built with heat and press-on-metal technique is not significantly different from marginal fit of metal ceramic crown built with traditional technique. And along with efficiency of this system, heat and press-on-metal technique is considered in clinic.

Molecular Level Detection of Heavy Metal Ions Using Atomic Force Microscope (원자간인력현미경을 이용한 분자수준의 중금속 이온 검출)

  • Kim, Younghun;Kang, Sung Koo;Choi, Inhee;Lee, Jeongjin;Yi, Jongheop
    • Clean Technology
    • /
    • v.11 no.2
    • /
    • pp.69-74
    • /
    • 2005
  • A metal ion detector with a submicron size electrode was fabricated by field-induced AFM oxidation. The square frame of the mesa pattern was functionalized by APTES for the metal ion detection, and the remaining portion was used as an electrode by the self-assembly of MPTMS for Au metal deposition. The conductance changed with the quantity of adsorbed copper ions, due to electron tunneling between the mobile and surface electrodes. The smaller electrode has a lower limit of detection due to the enhancement in electron tunneling through metal ions that are adsorbed between the conductive-tip (mobile) and the surface (fixed) electrode. This two-electrode system immobilized with different functional groups was successfully used in the selective adsorption and detection of target materials.

  • PDF

The Development of Punch-Die Aligning Algorithm in Micro Punch System with using the Total Capacitance (총 정전용량을 이용한 마이크로펀치 시스템의 펀치-다이 얼라인먼트 조절 알고리즘 개발)

  • 최근형;김병희;김헌영;장인배
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.114-119
    • /
    • 2003
  • The aligning between the punch and die governs no only the burr formation characteristics but also the life time of the punch and die in the sheet metal blanking process. There are many ways to adjust the two elements in the general punching systems but in the case of micro punch system, the punch size is reduced to a few tenth of micrometer range and the general aligning methods are almost impossible to apply. The image processing is the most widely used method in micro punch aligning, but in order to apply the method, it needs quite a large space for visionary system to approach the punch-die aligning zone. In this paper, the new punch-die aligning method with using the total capacitance between the punch and die hole is proposed. In this method, the tip surface of the punch tool locates at the same plane of the die surface and the capacitance variation between the two elements are measured. When the center of the two elements are coincided, the capacitance is minimized, but when the align is changed to any direction, the capacitance between the two elements increase. In order to verify the feasibility of this method, the aligning and punching tests was performed.

The development of punch-die aligning algorithm in micro punch system with using the total capacitance (총 정전용량을 이용한 마이크로 펀치 시스템의 펀치-다이 얼라인먼트 조절 알고리즘 개발)

  • 최근형;김병희;김헌영;장인배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1049-1052
    • /
    • 2002
  • The aligning between the punch and die governs no only the burr formation characteristics but also the life time of the punch and die in the sheet metal blanking process. There are many ways to adjust the two elements in the general punching systems but in the case of micro punch system, the punch size is reduced to a few tenth of micrometer range and the general aligning methods are almost impossible to apply. The image processing is the most widely used method in micro punch aligning, but in order to apply the method, it needs quite a large space for visionary system to approach the punch-die aligning zone. In this paper, the new punch-die aligning method with using the total capacitance between the punch and die hole is proposed. In this method, the tip surface of the punch tool locates at the same plane of the die surface and the capacitance variation between the two elements are measured. When the center of the two elements are coincided, the capacitance is minimized, but when the align Is changed to any direction, the capacitance between the two elements increase. In order to verify the feasibility of this method, the aligning and punching tests was performed.

  • PDF