• Title/Summary/Keyword: two-dimensional vibration energy harvesting

Search Result 4, Processing Time 0.019 seconds

Wideband and 2D vibration energy harvester using multiple magnetoelectric transducers

  • Yang, Jin;Yu, Qiangmo;Zhao, Jiangxin;Zhao, Nian;Wen, Yumei;Li, Ping
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.579-591
    • /
    • 2015
  • This paper investigates a magnetoelectric (ME) vibration energy harvester that can scavenge energy in arbitrary directions in a plane as well as wide working bandwidth. In this harvester, a circular cross-section cantilever rod is adopted to extract the external vibration energy due to the capability of it's free end oscillating in arbitrary in-plane directions. And permanent magnets are fixed to the free end of the cantilever rod, causing it to experience a non-linear force as it moves with respect to stationary ME transducers and magnets. The magnetically coupled cantilever rod exhibits a nonlinear and two-mode motion, and responds to vibration over a much broader frequency range than a standard cantilever. The effects of the magnetic field distribution and the magnetic force on the harvester's voltage response are investigated with the aim to obtain the optimal vibration energy harvesting performances. A prototype harvester was fabricated and experimentally tested, and the experimental results verified that the harvester can extract energy from arbitrary in-plane directions, and had maximum bandwidth of 5.5 Hz, and output power of 0.13 mW at an acceleration of 0.6 g (with $g=9.8ms^{-2}$).

Dynamic Characteristics and Piezoelectric Effect of Energy Harvesting Block Structures with Different Shapes (다양한 형상 변화에 따른 에너지 수확용 블록 구조의 동적 특성 및 압전 효과)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.379-387
    • /
    • 2012
  • This study investigates free vibration characteristics of new energy harvesting multi-layer block structures with different geometrical shapes using solid and shell finite elements and evaluate their piezoelectric effect on experiments. The two and three-dimensional finite element (FE) delamination models for block structures described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the entire vibration mode shape. The FE model using ABAQUS is used for studying free vibrations of multi-layer block structures for various tip mass and PZT. In particular, new results reported in this paper are focused on the significant effects of the global and local vibration modes for various parameters, such as size of block shape, existence of tip mass and hole, and location of tip mass and PZT. In addition, we evaluate the power generation capacity of developed energy block structures through a laboratory-scale experiment.

Design and Fabrication of Printed Circuit Board (PCB) Integrated Energy Harvester (PCB 일체형 에너지 하베스터의 설계 및 제작)

  • Min, Chul Hong;Kim, Tae Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.846-851
    • /
    • 2013
  • Recently, energy harvesting technologies are considered as the great alternatives to reduce the dependency on secondary batteries. In this paper, we proposed PCB type energy harvester which can be directly integrated with other electronic components on same board. To form the three dimensional coil structure, two PCBs with patterned metal lines are solder bonded. For magnetic induction, inside of coil structure was filled with magnetic substance and rotary motioned external magnets are applied to near the harvester. The effects of metal wire width on PCB, thickness of magnetic substance, and frequency of rotary motion on energy harvesting performance are analyzed by computer simulation and experiments. Experimental results showed 29.89 ${\mu}W$ of power generation performance at the frequency of 5.2 Hz and it is shown that designed harvester can be effectively applied on vibration environment with very limited frequency.

Approximate evaluations and simplified analyses of shear- mode piezoelectric modal effective electromechanical coupling

  • Benjeddou, Ayech
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.275-302
    • /
    • 2015
  • Theoretical and numerical assessments of approximate evaluations and simplified analyses of piezoelectric structures transverse shear modal effective electromechanical coupling coefficient (EMCC) are presented. Therefore, the latter is first introduced theoretically and its approximate evaluations are reviewed; then, three-dimensional (3D) and simplified two-dimensional (2D) plane-strain (PStrain) and plane-stress (PStress) piezoelectric constitutive behaviors of electroded shear piezoceramic patches are derived and corresponding expected short-circuit (SC) and open-circuit (OC) frequencies and resulting EMCC are discussed; next, using a piezoceramic shear sandwich beam cantilever typical benchmark, a 3D finite element (FE) assessment of different evaluation techniques of the shear modal effective EMCC is conducted, including the equipotential (EP) constraints effect; finally, 2D PStrain and PStress FE modal analyses under SC and OC electric conditions, are conducted and corresponding results (SC/OC frequencies and resulting effective EMCC) are compared to 3D ones. It is found that: (i) physical EP constraints reduce drastically the shear modal effective EMCC; (ii) PStress and PStrain results depend strongly on the filling foam stiffness, rendering inadequate the use of popular equivalent single layer models for the transverse shear-mode sandwich configuration; (iii) in contrary to results of piezoelectric shunted damping and energy harvesting popular single-degree-of-freedom-based models, transverse shear modal effective EMCC values are very small in particular for the first mode which is the common target of these applications.