• Title/Summary/Keyword: two-dimensional hydraulic experiment

Search Result 46, Processing Time 0.027 seconds

Defining the hydraulic excavation damaged zone considering hydraulic aperture change (수리적 간극변화를 고려한 수리적 굴착손상영역의 정의에 관한 연구)

  • Park, Jong-Sung;Ryu, Chang-Ha;Lee, Chung-In;Ryu, Dong-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.133-141
    • /
    • 2007
  • The excavation damaged zone (EDZ) is an area around an excavation where in situ rock mass properties, stress condition, displacement, groundwater flow conditions have been altered due to the processes induced by the excavation. Various studies have been carried out on EDZ, but most studies have focused on the mechanical bahavior of EDZ by in situ experiment. Even though the EDZ could potentially form a high permeable pathway of groundwater flow, only a few studies were performed on the analysis of groundwater flow in EDZ. In this study, the 'hydraulic EDZ' was defined as the rock zone adjacent to the excavation where the hydraulic aperture has been changed due to the excavation by using H-M coupling analysis. Fundamental principles of distinct element method (DEM) were used in the analysis. In the same groundwater level, the behavior of hydraulic aperture near the cavern was analyzed for different stress ratios, initial apertures, fracture angles and fracture spacings by using a two-dimensional DEM program. We evaluate the excavation induced hydraulic aperture change. Using the results of the study, hydraulic EDZ was defined as an elliptical shape model perpendicular to the joint.

  • PDF

One-Dimensional Analysis of Air-Water Two Phase Natural Circulation Flow (공기와 물의 이상 자연순환 유동의 1 차원 해석)

  • Park, Rae-Joon;Ha, Kwang-Soon;Kim, Jae-Cheol;Hong, Seong-Wan;Kim, Sang-Baik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2626-2631
    • /
    • 2007
  • Air-water two phase natural circulation flow in the T-HERMES (Thermo-Hydraulic Evaluation of Reactor cooling Mechanism by External Self-induced flow)-1D experiment has been evaluated to verify and evaluate the experimental results by using the RELAP5/MOD3 computer code. The RELAP5 results have shown that an increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not effective on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. The water level is not effective on the water circulation mass flow rate. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it is not effective on the local pressure.

  • PDF

The Flow Analysis of Supercavitating Cascade by Nonlinear Theory (비선형이론에 의한 Supercavitation 익렬의 유동해석)

  • Pak, Ee-Tong;Hwang, Yoon
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.35-46
    • /
    • 1997
  • In this study comparison of experiment results with the computed results of linear theory and nonlinear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade using nonlinear theory, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. The results compared linear theory and nonlinear theory with the experiment results of the study are as follows: The tolerances of nonlinear theory were larger than those of linear theory in case of ${\alpha}<10^{\circ}$. Moreover the computational range of attack angles could be expanded from ${\alpha}=10^{\circ}$ to ${\alpha}=25^{\circ}$, the flow field of supercavitating cascade could be analyzed in the condition which the wake thickness and the length of cavity are a variable. The shapes of cavity were changed sensitively according to various variable such as attack angles, pitches and wake thickness, and the pressure distribution of hydrofoil surface was identical almost disregarding wake thickness but changed largely according to attack angle and the length of cavity. Lift coefficient and drag coefficient were reduced according to increasing of wake thickness but the influences of wake thickness were very little in the situation of small pitch and long cavity.

  • PDF

Experimental studies on mass transport in groundwater through fracture network using artificial fracture model

  • Tsuchihara Takeo;Yoshimura Masahito;Ishida Satoshi;Imaizumi Masayuki;Ohonishi Ryouichi
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.676-683
    • /
    • 2003
  • A laboratory experiment using artificial fracture rocks was used to understand the 3-dimensional dispersion of a tracer and the mixing process in a fractured network. In this experiment, 12cm polystyrene foam cubes with two electrodes for monitoring electric conductivity (EC) were used as artificial fractured rocks. Distilled water with 0.5mS/m was used as a tracer in water with 35mS/m and the difference of EC between the tracer and the water was monitored by a multipoint simultaneous measurement system of electrical resistance. The results showed that even if the fracture arrangement pattern was not straight in the direction of the flow, the tracer did not diffuse along individual fractures and an oval tracer plume, which was the distribution of tracer concentrations, tended to be form in the direction of the flow. The vertical cross section of the tracer distribution showed small diffusivity in the vertical direction. The calculated total tracer volume passing through each measurement point in the horizontal cross section showed while that the solute passed through measurement points near the direction of hydraulic gradient and in other directions, the passed tracer volumes were small. Using Peclet number as a criterion, it was found that the mass distribution at the fracture intersection was controlled in the stage of transition between the complete mixing model and the streamline routing model.

  • PDF

The MARS Simulation of the ATLAS Main Steam Line Break Experiment

  • Ha, Tae Wook;Yun, Byong Jo;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.112-122
    • /
    • 2014
  • A main steam line break (MSLB) test at the ATLAS facility was simulated using the best-estimate thermal-hydraulic system code, MARS-KS. This has been performed as an activity at the third domestic standard problem for code benchmark (DSP-03) that has been organized by Korea Atomic Energy Research Institute (KAERI). The results of the MSLB experiment and the MARS input data prepared for the previous DSP-02 using the ATLAS facility were provided to participants. The preliminary MSLB simulation using the base input data, however, showed unphysical results in the primary-to-secondary heat transfer. To resolve the problems, some improvements were implemented in the MARS input modelling. These include the use of fine meshes for the bottom region of the steam generator secondary side and proper thermal-hydraulics calculation options. Other input model improvements in the heat loss and the flow restrictor models were also made and the results were investigated in detail. From the results of simulations, the limitations and further improvement areas of the MARS code were identified.

Numerical Studies on the Inducer/Impeller Interaction Liquid Rocket Engine Turbopump (액체로켓용 터보펌프 인듀서/임펠러 상호작용에 대한 연구)

  • Choi, Chang-Ho;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.50-57
    • /
    • 2003
  • The hydraulic performance analysis of a turbopump with an inducer for a liquid rocket engine was performed using three-dimensional Navier-Stokes equations. A simple mixing-plane method and a full interaction method were used to simulate inducer/impeller interaction. Two methods show almost similar results due to the weak interaction between the inducer and impeller since the inducer outlet blade angle is lather small. But, when the inducer and the impeller are closely spaced near the shroud region, flow angles at the impeller inlet show different results between two methods. Thus, the full interaction method predicts about $2\%$ higher pump performance than the mixing-plane method. And the effects of prewhirl at the impeller inlet are also investigated. As the inlet flow angle is increased, the head rise and the efficiency are decreased. The computational results are compared with measured ones. The computational results at the design point show good agreements with experimental data, however under-predicts the head rise at high mass flow rates compared to the experiment.

Experimental and Numerical Investigation on Heat Transfer and Fluid Flow Characteristics in the Ribbed Square Channel (거친 사각채널에서 열전달과 유체유동 특성에 관한 실험 및 수치해석)

  • Kang, Ho-Keun;Baer, Sung-Taek;Lee, Dae-Hee;Ahn, Soo-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.275-283
    • /
    • 2006
  • Experiment and three dimensional numerical investigations of incompressible turbulent flow through square channels with one- and two-sided ribbed walls are performed to determine pressure drop and heat transfer. The CFX(version 5.7) software package is used for the computation. The ribbed walls have a $45^{\circ}$ inclined square rib. Uniform heat flux is maintained on whole inner heat transfer channel area. The numerical results coincide with experimental data that obtained for $7,600{\le}Re{\le}24.900$, the pitch-to-rib height ratio (p/e) of 8.0. and the rib height-to-channel hydraulic diameter ratio ($e/D_h$) of 0.0667. The results show that values of local heat transfer coefficient and friction factor in the channel with two-sided ribbed wall are higher than those in the channel with one-sided ribbed walls.

An Experimental Study on the Effect of a Hydraulic Structure on the Three-dimensional Flow in a Meandering Channel (만곡수로 내 수리구조물 설치에 따른 3차원 흐름 특성변화 실험 연구)

  • Lee, Dong Hun;Kim, Su Jin;Kang, Seokkoo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.8
    • /
    • pp.635-645
    • /
    • 2015
  • The objective of this study is to examine the three-dimensional turbulent flows occurring in the meandering channel with presence of a groyne. A series of laboratory experiments are carried out in a meandering channel with trapezoidal cross sections. The channel is a 24.4 m long, 1.5 m wide, and the bottom slope in the longitudinal direction is 0.02. Two cases with and without the groyne are considered in the experiment. Three-dimensional velocity fields are measured using an acoustic Doppler velocimetry (ADV) at approximately sixty locations in each cross section. The measured velocity fields are averaged in time, and the time-averaged flow revealed that the mean velocity magnitude along the outer bank of the channel was reduced significantly and the direction of the primary flow was directed toward the center of the channel due to the presence of the groyne.

Experiments for Amour Stability of Low Crested Structure Covered by Tetrapods (저 마루높이 구조물의 피복재 안정성 실험: Tetrapod 피복 조건)

  • Lee, Jong-In;Bae, Il Rho;Moon, Gang Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.769-777
    • /
    • 2019
  • Low crested coastal structures such as detached breakwaters and submerged breakwaters (artificial reefs) have been commonly used as coastal protection measures. The armour units of these structures are unstable than those in non-overtopped structure cases. The stability of low crested structures armoured by rock has been suggested in existing studies. In this study, the stability of Tetrapods armour units on theses structures has been investigated using two-dimensional hydraulic model tests. The effect of wave steepness and freeboard on the armour stability on crest, front, and the rear slope has been investigated. Armour units were mostly damaged near the upper part of the seaward slope and the crest of the seaward side. From the experimental data, the new empirical formula for the stability coefficients of the Tetrapods was proposed.

An Experimental Basic Study of Water Purification Function due to Spit in Small Estuary (하구에 형성된 소규모 모래톱의 수질정화 기능에 관한 기초적 연구)

  • Park, Sang-Kil;Kim, Byung-Dal;Jeong, Seong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.8-15
    • /
    • 2007
  • This study is intended to examine the relationship between the magnitude of sand spit in the estuary of the stream and improvement of the quality of water that flaws into the sea, by means of hydraulic experimentation. In order to determine the effect of improvements of water quality when river flow is stagnant, the estuary flows into the sea through the small sand spit, and a two-dimensional physical model experiment was carried out. Distribution of concentration was decreased in response to an increase in length of sand spit and time. The experimental results are compared with theoretical results, based on the solution of the equation. Also, there are functions of influx prevention of salt wedge and purification of pollution water due to sand spit in small estuary.