• Title/Summary/Keyword: two-axis fore sensor

Search Result 2, Processing Time 0.018 seconds

Design of Two-axis Force Sensor for Robot's Finger

  • Kim, Gob-Soon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.66-70
    • /
    • 2001
  • This paper describes the design of a two-axis force sensor for robots finger. In detects the x-direction force Fx and y-direction force Fy simultaneously. In order to safely grasp an unknown object using the robots fingers, they should detect the force or gripping direction and the force of gravity direction, and perform the force control using the forces detected. Therefore, the robots hand should be made by the robots finger with tow-axis force sensor that can detect the x-direction force and y-direction force si-multaneously. Thus, in this paper, the two-axis force sensor for robots finger is designed using several parallel-plate beams. The equations to calculate the strain of the beams according to the force in order to design the sensing element of the force sensor are derived and these equations are used to design the aize of two-axis force sensor sensing element. The reliability of the derive equa-tions is verified buy performing a finite element analysis of the sensing element. The strain obtained through this process is compared to that obtained through the theory analysis and a characteristics test of the fabricated sensor. It reveals that the rated strains calculated from the derive equations make a good agreement with the results from the Finite Element Method analysis and from the character-istic test.

  • PDF

Drone Hovering using PID Control (PID 제어를 이용한 드론의 호버링)

  • Oh, Ji-Wan;Seol, Jae-Won;Gong, Youn-Hee;Han, Seung-Jae;Lee, Seung-Dae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1269-1274
    • /
    • 2018
  • In this paper, it covers technical aspect of drone by introducing the drone hovering. Arduino Uno and 3-axis attitude and azimuth sensor are the two main components of the drone. Arduino Uno is used as a main controller and 3-axis attitude and azimuth sensor are used to collect axial (X,Y,Z) data, which is massaged to determine the pitch (fore and aft tilt) and the bank (side to side tilt). Furthermore, drone stabilizes horizontal attitude by correcting these tilted angle through PID control.