• Title/Summary/Keyword: two stream inputs

Search Result 12, Processing Time 0.021 seconds

Generation of Simulation input Stream using Threshold Bootstrap (임계값 부트스트랩을 사용한 시뮬레이션 입력 시나리오의 생성)

  • Kim Yun Bae;Kim Jae Bum
    • Korean Management Science Review
    • /
    • v.22 no.1
    • /
    • pp.15-26
    • /
    • 2005
  • The bootstrap is a method of computational inference that simulates the creation of new data by resampling from a single data set. We propose a new job for the bootstrap: generating inputs from one historical trace using Threshold Bootstrap. In this regard, the most important quality of bootstrap samples is that they be functionally indistinguishable from independent samples of the same stochastic process. We describe a quantitative measure of difference between two time series, and demonstrate the sensitivity of this measure for discriminating between two data generating processes. Utilizing this distance measure for the task of generating inputs, we show a way of tuning the bootstrap using a single observed trace. This application of the threshold bootstrap will be a powerful tool for Monte Carlo simulation. Monte Carlo simulation analysis relies on built-in input generators. These generators make unrealistic assumptions about independence and marginal distributions. The alternative source of inputs, historical trace data, though realistic by definition, provides only a single input stream for simulation. One benefit of our method would be expanding the number of inputs achieving reality by driving system models with actual historical input series. Another benefit might be the automatic generation of lifelike scenarios for the field of finance.

Calculation of Pollutant Loadings from Stream Watershed Using Digital Elevation Model and Pollutant Load Unit Factors (발생부하원단위와 수치표고모형을 이용한 하천유역 오염부하량 산정)

  • Yang, Hong-Mo;Kim, Hyuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.22-31
    • /
    • 2001
  • The purpose of this study is to compare calculated pollutant loadings using pollutant load unit factors and vector type coverage, and expected mean concentration(EMC) and raster type of digital elevation model(DEM). This study is also focusing on comparison of the advantages and the disadvantages of the two methods, and seeking for a method of calculation of pollutant loadings using DEM. Estimation of pollutant inputs using pollutant load unit factors has limitations in identifying seasonal variations of pollutant loadings. Seasonal changes of runoffs should be considered in the calculation of pollutant loadings from catchments into reservoirs. Evaluation of pollutant inputs using runoff-coefficient and EMC can overcome these drawbacks. Proper EMC and runoff-coefficient values for the Koeup stream catchments of the Koheung estuarine lake were drawn from review of related papers. Arc/Info was employed to establish database of spatial and attribute data of point and non-point pollutant sources and characteristics of the catchments. ArcView was used to calculate point and non-point pollutant loadings. Pollutant loads estimated with either unit factors-coverages, i.e., pollutant load unit factors and vector coverages f point sources and land use, or EMC and digital elevation mode(DEM) were compared with stream monitoring loads. We have found that some differences were shown between monitoring results and estimated loads by Unit Factors-Coverage and EMC-DEM. Monthly variations of pollutant loads evaluated with EMC-DEM were similar to those with monitoring result. The method using EMC-DEM can calculate accumulated flows and pollutant loads and can be utilized to identify stream networks. A future research on correcting the difference between vector type stream using flow direction grid and digitalizing vector type should be conducted in order to obtain more exact calculation of pollutant loadings.

  • PDF

Deep learning-based Human Action Recognition Technique Considering the Spatio-Temporal Relationship of Joints (관절의 시·공간적 관계를 고려한 딥러닝 기반의 행동인식 기법)

  • Choi, Inkyu;Song, Hyok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.413-415
    • /
    • 2022
  • Since human joints can be used as useful information for analyzing human behavior as a component of the human body, many studies have been conducted on human action recognition using joint information. However, it is a very complex problem to recognize human action that changes every moment using only each independent joint information. Therefore, an additional information extraction method to be used for learning and an algorithm that considers the current state based on the past state are needed. In this paper, we propose a human action recognition technique considering the positional relationship of connected joints and the change of the position of each joint over time. Using the pre-trained joint extraction model, position information of each joint is obtained, and bone information is extracted using the difference vector between the connected joints. In addition, a simplified neural network is constructed according to the two types of inputs, and spatio-temporal features are extracted by adding LSTM. As a result of the experiment using a dataset consisting of 9 behaviors, it was confirmed that when the action recognition accuracy was measured considering the temporal and spatial relationship features of each joint, it showed superior performance compared to the result using only single joint information.

  • PDF

The State and Sources of Contamination with Heavy Metals and Anion in Stream Within Chonju City (전주시 하천의 중금속과 음이온에 대한 수질현황 및 오염원)

  • 오창환;이지선;김강주;정성석;황갑수;이영엽
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.89-104
    • /
    • 2001
  • The Chonju and Samchun streams are passing though Chonju city and several contamination sources are located along these streams. The Samchun stream joins the Chonju stream in the Gosapyeong waste disposal site and the Chonju stream finally joins to the Mankyeong River. The objectives of this study are to determine the state and sources of contamination for heavy metals and anions in the Chonju and Samchun streams and to evaluate the effect of these streams on the contamination of the Mankyeong River. In order to select sampling locations, a stratified random sampling method was used. These streams was divided into several parts according to the expected contamination state, and samples were selected randomly from these parts. Generally, the water qualities of these streams were generally below the Drinking Water Level at the time of sampling in various heavy metals and anions. However, the levels of AI, Fe, $NH_{3}-N,Cl^{-}$, Cl- in these streams could be higher during dry season due to continuous inputs from various contamination sources. This study identified several contamination sources for these streams; two waste disposal sites along these streams for Fe, Mn, AI, Zn and $Cl^{-}$, the Chonju Waste Water Treatment Plant for Zn, Mn, $Cl^{-}$, $SO_{4}S$, $NO_{2}N$, and $NH_{3}-N$ and the untreated sewages for AI, Zn, Mn, $Cl^{-}$, $SO_{4}S$, $NH_{3}-N$ and $PO_{4}^{2-}$. This study also revealed that the Chonju stream itself is an important contamination source for Fe, Mn, $Cl^{-}$ and $SO_{4}S$ in the Mankyung River.

  • PDF

Spatial and Temporal Variability of Water Quality in Geum-River Watershed and Their Influences by Landuse Pattern (금강 수계의 시.공간적 수질특성과 토지이용도의 영향)

  • Han, Jeong-Ho;Bae, Young-Ju;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.385-399
    • /
    • 2010
  • The objective of this study was to analyze long term temporal trends of water chemistry and spatial heterogeneity for 83 sampling sites of Geum-River watershed using water quality dataset during 2003~2007 (obtained from the Ministry of Environment, Korea). The water quality, based on multi-parameters of temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), total phosphorus (TP), and electric conductivity (EC), largely varied depending on the landuse patterns, years and seasons. The watershed was classified into three different landuse types: forest stream (Fo), agricultural stream (Ag), and urban stream (Ur). Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of summer monsoon rain. Conductivity, used as a key indicator for an ionic dilution during rainy season, and nutrients of TN and TP had inverse functions of precipitation. BOD, COD decrease during the rainy season. Minimum values in the conductivity, TN, and TP were observed during the summer monsoon, indicating an ionic and nutrient dilution of river water by the rainwater. In contrast, major inputs of suspended solids (SS) occurred during the period of summer monsoon. The landuse patterns analyses, based on the variables of BOD, COD, TN, TP and SS, showed that the values were greater in the agricultural stream (Ag) than in the forest stream (Fo) and urban stream (Ur) and that water quality was worst in the urban stream (Ur). The overall dataset suggest that efficient water quality management, especially in Gap-Stream and Miho-Stream, which showed worst water quality is required along with some of urban stream (Ur), based on the analysis of landuse patterns.

Assessment of stream water quality and pollutant discharge loads affected by recycled irrigation in an agricultural watershed using HSPF and a multi-reservoir model (HSPF와 다중 저류지 모형을 이용한 농업지역 순환관개에 의한 하천 수질 및 배출부하 영향 분석)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.297-305
    • /
    • 2023
  • The recycled irrigation is a type of irrigation that uses downstream water to fulfill irrigation demand in the upstream agricultural areas; the used irrigation water returns back to the downstream. The recycled irrigation is advantageous for securing irrigation water for plant growth, but the returned water typically contains high levels of nutrients due to excess nutrients inputs during the agricultural activities, potentially deteriorating stream water quality. Therefore, quantitative assessment on the effect of the recycled irrigation on the stream water quality is required to establish strategies for effective irrigation water supply and water quality management. For this purpose, a watershed model is generally used; however no functions to simulate the effects of the recycled irrigation are provided in the existing watershed models. In this study, we used multi-reservoir model coupled with the Hydrological Simulation Program-Fortran (HSPF) to estimate the effect of the recycled irrigation on the stream water quality. The study area was the Gwangok stream watershed, a subwatershed of Gyeseong stream watershed in Changnyeong county, Gyeongsangnam-do. The HSPF model was built, calibrated, and used to produce time series data of flow and water quality, which were used as hypothetical observation data to calibrate the multi-reservoir model. The calibrated multi-reservoir model was used for simulating the recycled irrigation. In the multi-reservoir model, the Gwangok watershed consisted of two subsystems, irrigation and the Gwangok stream, and the reactions (plant uptake, adsorption, desorption, and decay) within each subsystem, and fluxes of water and materials between the subsystems, were modeled. Using the developed model, three scenarios with different combinations of the operating conditions of the recycled irrigation were evaluated for their effects on the stream water quality.

Effect of change in forest environment on water storage capacity in soil and streamflow (산림환경 변화가 토양내 수저유능력과 유출에 미치는 영향)

  • Nam, Yi;Park, Seung-Ki
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.35-51
    • /
    • 1997
  • To clarify the effect of forest environmental changes (forest type difference and clearcut) on water storage capacity in soil and stream flow, watershed had been investigated in Pyungchang, Kangwon-Do during 1983∼1993. Hydrological datas such as runoff, monthly ratio of runoff to precipitation, runoff-duration, monthly runoff(by plenty, ordinary, low and scanty duration), total runoff, direct runoff by runoff components, bulk density, porosity, coarse pore, fine pore, permeability and effective water storage were obtained from Backokpo and Yimokjong watersheds. The monthly ratio of runoff to precipitation, runoff and runoff-duration were higher in Yimokiong than in Backokpo due to forest type difference. On compararing pre-treatment with trement period in two experimental watersheds, pre-treatment period was lower than treatment period. Physical properties of soil such as bulk density, porosity, permeability, and effective water storage capacity conditions were better during the pre-trement period than treatment period in the two experiment plots.

  • PDF

Chemical Characteristics of Precipitation in Quercus Forests in Korea and Japan

  • Kim, Min Sik;Takenaka, Chisato;Park, Ho Taek;Chun, Kun Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.503-509
    • /
    • 2007
  • The major objective of this study was to analyze the difference of the chemical characteristics of acid deposition in Quercus forests in Korea and Japan. The pH values of rainfall at the experimental forest of Kangwon National University (KS site) were higher than those at the Foresta Hills in Japan (JP site), and all chemical contents of throughfall and stemflow were much higher than those of rainfall in Quercus forest stands at the KS and JP site. The pH values, $Ca^{2+}$, $NO_3{^-}$ and $SO{_4}^{2-}$ concentration of throughfall and stemflow at the KS site showed seasonal variation. While at the JP site, the same pattern was shown in the pH values of throughfall and stemflow, however, did not show any difference among seasons. Also, the annual input of all nutrients in these two contrasting forests varied seasonally. These results can be used to predict the amounts of air pollutant that are washed off and leached by the rainfall and Yellow Sand (Asian dust), including NOx and SOx acid pollutants transported easterly from China in the spring. Therefore, it is necessary to quantify the inputs of dry and wet deposition throughout a full year to gain a more complete understanding of the effects of acid deposition on the nutrient cycles in these forest ecosystems.

Effect of major pollution sources on algal blooms in the Seungchon weir and Juksan weir in the Yeongsan River using EFDC (EFDC를 이용한 영산강 주요 오염 부하 저감에 따른 승촌보 및 죽산보 녹조 현상 개선 효과 분석)

  • Kim, Jinsoo;Kim, Jaeyoung;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.5
    • /
    • pp.369-381
    • /
    • 2020
  • In this paper, observed water quality, algal blooms and flow rates in the Yeongsan River and its boundaries including 8 tributaries and 2 wastewater treatment plants for two years of 2018-2019 were analyzed. It seems effects of non-point source load inputs from basin areas to the river may be significant though the field data availability was limited. The EFDC model was calibrated against data collected from 6 water level monitoring stations and 6 water quality monitoring stations, respectively, in the study area. Water quality improvement scenarios were developed assuming 50% and 75% reductions of major pollution sources including treatment plants and tributaries. The developed scenarios were applied to the EFDC model to estimate effects on algal bloom occurrences in the Seungchon weir and Juksan weir. Improvement of the effluent of Gwangju 1 WWTP by 75% did not show any effect on algal blooms for two weir locations. The major tributary affecting algal blooms in the Seungchon weir was the Hwangryong River. The Jisuk stream was found as the most important tributary for the Juksan weir followed by the effect of the Hwangryong River. Though it seems other scattered small nonpoint source load input to the Yeongsan river also seem to be important, it was not possible to reflect their effects appropriately due to field data availability.

Water Level Control of PWR Steam Generator using Knowledge Information and Neural Networks (지식정보와 신경회로망을 이용한 가압경수로 증기발생기 수위제어)

  • Bae, Hyeon-Bae;Woo, Young-Kwang;Kim, Sung-Shin;Jung, Kee-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.322-327
    • /
    • 2003
  • The water level of a steam generator of pressurized light water nuclear Power generator is known as a subject whose control is difficult because of a shrinking and swelling effect that is been mutually contradictory in a variation of feed water. In this paper, a neural network model selects first coordinative controller by a inappropriate gain of two PI controllers and the selected controller's gain is tuned by a fuzzy self-tuner. Model inputs consist of the water level, the feed water, and the stream flow. One controller of both coupling controllers whose gain is handled firstly is decided based upon above data. The proposed method can analyze patterns of signals using the characteristic of neural networks and select one controller that needs to be tuned through the observed result in this paper. If one controller between both the water level controller and the feed water controller is selected by the neural network model then a gain of the PI controller is suitably tuned by the fuzzy self-tuner. Rules of the fuzzy self-tuner drew from the pattern of input and output data. In the summary, the goal of this Paper is to select the suitable controller and tune the control gain of the selected controller suitably through such two processes.