Many researchers in various study fields use the two sample t-test to confirm their treatment effects. The two sample t-test is generally used for small samples, and assumes that two independent random samples are selected from normal populations, and the population variances are unknown. Researchers often conduct F-test, the test of equality of variances, before testing the treatment effects, and the test statistic or confidence interval for the two sample t-test has two formats according to whether the variances are equal or not. Researchers using the two sample t-test often want to know how large sample sizes they need to get reliable test results. This research gives some guidelines for sample sizes to them through simulation works. The simulation had run for normal populations with the different ratios of two variances for different sample sizes (${\leq}30$). The simulation results are as follows. First, if one has no idea equality of variances but he/she can assume the difference is moderate, it is safe to use sample size at least 20 in terms of the nominal level of significance. Second, the power of F-test for the equality of variances is very low when the sample sizes are small (<30) even though the ratio of two variances is equal to 2. Third, the sample sizes at least 10 for the two sample t-test are recommendable in terms of the nominal level of significance and the error limit.
This research examines the power of bootstrap two-sample test, and compares it with the powers of two-sample t-test and Wilcoxon rank sum test, through simulation. For simulation work, a positively skewed and heavy tailed distribution was selected as a population distribution, the chi-square distributions with three degrees of freedom, χ23. For two independent samples, the fist sample was selected from χ23. The second sample was selected independently from the same χ23 as the first sample, and calculated d+ax for each sampled value x, a randomly selected value from χ23. The d in d+ax has from 0 to 5 by 0.5 interval, and the a has from 1.0 to 1.5 by 0.1 interval. The powers of three methods were evaluated for the sample sizes 10,20,30,40,50. The null hypothesis was the two population medians being equal for Bootstrap two-sample test and Wilcoxon rank sum test, and the two population means being equal for the two-sample t-test. The powers were obtained using r program language; wilcox.test() in r base package for Wilcoxon rank sum test, t.test() in r base package for the two-sample t-test, boot.two.bca() in r wBoot pacakge for the bootstrap two-sample test. Simulation results show that the power of Wilcoxon rank sum test is the best for all 330 (n,a,d) combinations and the power of two-sample t-test comes next, and the power of bootstrap two-sample comes last. As the results, it can be recommended to use the classic inference methods if there are widely accepted and used methods, in terms of time, costs, sometimes power.
The main purpose of this study is to investigate the effect of departures from normality and equal variance on the two-sample test when the variances are unknown. We have found that type I error brought about a little bit change which is ignorable in relation to kurtosis. But the change of type I error was mainly based on the skewness of the parent population. In introductory statistics classes where data analysis includes techniques for detecting skewness of two populations, we recommend the two-sample t-test when maximal skewness of two populations is smalter than the value 4 when the variances seem equal. Furthermore, our simulations reveal that the two-sample t-test appears somewhat more robust than that of z-test if the assumption of equal variance is satisfied. In the case of unequal variance, the two-sample t-test appears somewhat more robust provided the t-statistic using Satterthwaite's approximate degrees of freedom.
This research examines the effect of positively skewed population distribution on the two sample t-test through simulation. For simulation work, two independent samples were selected from the same chi-square distributions with 3, 5, 10, 15, 20, 30 degrees of freedom and sample sizes 3, 5, 10, 15, 20, 30, respectively. Chi-square distribution is largely skewed to the right at small degrees of freedom and getting symmetric as the degrees of freedom increase. Simulation results show that the sampled populations are distributed positively skewed like chi-square distribution with small degrees of freedom, the F-test for the equality of variances shows poor performances even at the relatively large degrees of freedom and sample sizes like 30 for both, and so it is recommended to avoid using F-test. When two population variances are equal, the skewness of population distribution does not affect on the t-test in terms of the confidence level. However even though for the highly positively skewed distribution and small sample sizes like three or five the t-test achieved the nominal confidence level, the error limits are very large at small sample size. Therefore, if the sampled population is expected to be highly skewed to the right, it will be recommended to use relatively large sample size, at least 20.
The two-sample t-test is not expected to be optimal when the two samples are not drawn from normal populations. According to Box and Cox (1964), the transformation is estimated to enhance the normality of the tranformed data. We investigate the asymptotic relative efficiency of the ordinary t-test versus t-test applied transformation introduced by Yeo and Johnson (1997) under Pitman local alternatives. The theoretical and simulation studies show that two-sample t-test using transformed date gives higher power than ordinary t-test for location-shift models.
본 논문에서는 이표본 위치문제에서 대표적인 윌콕슨 검정법과 T 검정법을 사용하여 잡음영상에서 에지를 검출하고자 한다. 에지높이모수를 사용하여 얻은 수정된 농도값상에서 검정통계량을 계산하고 유의수준에 의해 결정된 임계값과 비교하여 에지유무를 판정한다. 영상실험을 통하여 얻은 에지맵과 객관적인 척도하에서 에지검출 성능을 비교분석한다.
Communications for Statistical Applications and Methods
/
제17권1호
/
pp.79-88
/
2010
기초통계학의 수업에서 두 집단간 평균의 차이를 검정함에 있어 두 집단의 분산의 동질성 여부에 따라 다른 통계 절차를 사용할 것을 제안하고 있다. 이러한 이유로 통계 분석에 사용되는 SAS나 SPSS 등의 패키지에서는 두 집단의 평균 차이의 검정에 앞서 분산의 동질성 검정을 선행할 것을 제안한다. 하지만, 이전의 몇몇 연구에서 알려진 바와 같이 이러한 이 단계 검정 절차는 검정의 유의수준(제 1종의 오류)을 제어하기가 어렵다. 본 글에서는 이 단계 검정을 행함에 있어 1 단계와 2 단계의 유의수준 ${\alpha}_1$과 ${\alpha}_2$를 조절하여 전체 검정의 유의수준을 주어진 ${\alpha}$ 이하로 제어하는 절차를 소개한다.
The most common type of microarray experiment has a simple design using microarray data obtained from two different groups or conditions. A typical method to identify differentially expressed genes (DEGs) between two conditions is the conventional Student's t-test. The t-test is based on the simple estimation of the population variance for a gene using the sample variance of its expression levels. Although empirical Bayes approach improves on the t-statistic by not giving a high rank to genes only because they have a small sample variance, the basic assumption for this is same as the ordinary t-test which is the equality of variances across experimental groups. The t-test and empirical Bayes approach suffer from low statistical power because of the assumption of normal and unimodal distributions for the microarray data analysis. We propose a method to address these problems that is robust to outliers or skewed data, while maintaining the advantages of the classical t-test or modified t-statistics. The resulting data transformation to fit the normality assumption increases the statistical power for identifying DEGs using these statistics.
Communications for Statistical Applications and Methods
/
제16권4호
/
pp.615-625
/
2009
본 논문에서는 영상의 에지검출을 하는데 사용되는 여러 가지 윈도우 배치(window configurations)하에서 통계학의 이표본 위치문제(two-sample location problem)에서 대표적인 Wilcoxon 검정과 T-검정에 기초한 에지검출법에 대해 논의하고자 한다. 영상의 에지검출하는데 윈도우 배치 선택은 에지검출 성능을 결정하는 중요한 요소이다. 본 논문에서 에지는 선택된 윈도우 배치 하에서 에지-높이 모수(edge-height parameter)를 사용한 에지 모형 하에서 두 근방 영역간의 유의한 차이가 있는지를 검정함으로서 결정한다. 영상 실험에서 윈도우 배치에 따른 통계적 검정에 의한 에지검출 성능은 에지 맵(edge map)을 통한 정성적인 비교와 객관적인 척도하에서 정량적인 비교 그리고 CPU 계산시간까지 고려하여 분석하였다.
Journal of the Korean Data and Information Science Society
/
제21권6호
/
pp.1243-1251
/
2010
임상시험을 시행하는 경우 위약을 신약과 비교하는 경우가 대다수이다. 기존에 독립인 두 모 집단의 표본수를 계산하는 방법으로 모수적 방법에서는 t검정을 이용하였고, 비모수적 방법에서는 Wilcoxon 순위합검정 (Wilcoxon, 1945)을 이용하였다. 본 논문에서는 Orban과 Wolfe (1982)가 제안한 선형위치통계량의 검정법과, Kim (1994)이 선형위치통계량에 기초하여 계산한 검정력의 결과를 이용하여 표본수 구하는 방법을 제안한다. 또한 앞서 제안한 방법의 표본수를 기존의 Wilcoxon 순위합검정을 이용하여 Wang 등 (2003)이 제안한 공식을 이용한 표본수, 그리고 모수적 방법을 이용한 t검정의 표본수와 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.