• Title/Summary/Keyword: two phase turbulent flow

Search Result 139, Processing Time 0.026 seconds

Experimental Study on the Flow Characteristics of Sinusoidal Nozzle Jet (정현파 형상 노즐 제트의 유동특성에 관한 실험적 연구)

  • Kim, Hak-Lim;Rajagopalan, S.;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.28-34
    • /
    • 2010
  • Two turbulent jet with different sinusoidal nozzle exit configurations of in-phase and $180^{\circ}$ out-of-phase were investigated experimentally using a smoke-wire method and a hot-wire anemometry. Mean velocity and turbulence intensity were measured at several downstream locations under $Re_D\;=\;5000$. For the case of in-phase nozzle configuration, the length of potential core exhibits negligible difference with respect to the transverse locations (0, $\lambda/4$ and $\lambda/2$), similar to that of a plane jet. On the other hand, a maximum difference of 30% in the potential-core length occurs for the $180^{\circ}$ out-of-phase configuration. The spatial distributions of turbulence intensities also show significant difference for the nozzle of $180^{\circ}$ out-of-phase, whereas non-symmetric distribution is observed in the near-exit region(x/D = 1) for the in-phase sinusoidal nozzle jet. Compared to a slit planc jet, the sinusoidal nozzle jets seem to suppress the velocity deficit as the flow goes downstream. The sinusoidal nozzle jet was found to decrease turbulent intensity dramatically. The flow visualization results show that the flow characteristics of the sinusoidal nozzle jet are quite different from those of the slit plane jet.

Effects of Particle Size and Injector Geometry on Particle Dynamics (입자크기와 노즐형상이 입자유동특성에 미치는 영향)

  • 전운학;김종철;황승식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.97-103
    • /
    • 1998
  • The flow structure of particles for two different injectors has been investigated experimentally by means of a Phase Doppler Particle Analyzer(PDPA). Two injectors used in the present study are the pipe and contraction nozzle. Particles of 0.8${\mu}{\textrm}{m}$, 30${\mu}{\textrm}{m}$, 60 ${\mu}{\textrm}{m}$, and 100${\mu}{\textrm}{m}$ diameter were injected with a constant mass loading ratio of 0.01 and a Reynolds number of 13200. The initial mean velocity and turbulent intensity of particle are strongly influenced by the particle size and the injector geometry. The flow angles of particle at nozzle exit are sensitive to the particle size rather than the injector geometry.

  • PDF

Comparison between a 3 Dimensional Turbulent Numerical Model and Hydraulic Experiment Model for the flow phenomenon around a Lock Gate (배수갑문 주위의 흐름현상에 대한 3차원 난류 수치모형과 수리모형실험의 비교)

  • Lee, Sang-Hwa;Jang, Eun-Cheul;Ha, Jae-Yul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.162-169
    • /
    • 2007
  • This study is focused on the comparison of a 3 dimensional numerical and hydraulic model experiment for the flow phenomenon when a lock gate is opened. The lock gate is designed to discharge the flood flow rate at $218m^3/s$ of Solicheon at the Kun Jang national industry complex. The three dimensional ${\kappa}-{\epsilon}$ turbulent model of ANSYS CFX-10 of the computational fluid dynamics(CFD) program was used. The characteristics of CFX-10 are able to be simulated effectively for turbulent flow, especially the flow separation of the boundary layer of the two phase interface of air and water. The velocity and the flow pattern of the numerical model was showed to be similar to the results of the hydraulic model experiment.

LES on breakup and atomization of a liquid jet into cross turbulent flow in a rectangular duct (사각 덕트내 난류 횡단류 유동장에 분사되는 액체 제트의 분열과 미립화에 관한 LES 해석)

  • Yoo, Young-Lin;Han, Doo-Hee;Sung, Hong-Gye;Jeon, Hyuk-Soo;Park, Chul-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.290-297
    • /
    • 2016
  • A two-phase Large Eddy Simulation(LES) has been conducted to investigate breakup and atomization of a liquid jet in a cross turbulent flow in a rectangular duct. Gas-droplet two-phase flow was solved by a coupled Eulerian-Lagrangian method which tracks every individual particles. Effects of liquid breakup models, sub-grid scale models, and a order of spatial discretization was investigated. The penetration depth in cross flow was comparable with experimental data by varying breakup model and LES scheme. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

Study on Two-Phase Flow generated by Two Jets with Height Difference (높이차가 존재하는 두 분류의 2상유동에 관한 연구)

  • 박상규;양희천;이용호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.88-93
    • /
    • 2000
  • In this study, the mixing process of two-phase flow generated by two jets with height difference is analyzed. The primary jet is jetted on the condition of the state mixed pulverized solid particles with air. The height difference between the main jet and the secondary jet is changed into three kinds(0, 32.5, 47.5mm). The velocity vector field, concentration field and turbulent properties of solid particles are measured by using 3-Dimensional Particles Dynamics Analyzer. As the height difference of two jets through the two nozzles increases, the solid particle recirculation zone and the dense zone in the combustion chamber become large. The solid particle concentration at the center of the combustion chamber gets dense because the particle velocity remains slow due to the existence of the solid particle recirculation zone. The particle concentration in the combustion chamber can also be influenced by the hight difference of two jets.

  • PDF

ASSESSMENT OF THE CUPIDCODE APPLICABILITY TO SUBCHANNEL FLOW IN 2×2 ROD BUNDLE (CUPID 코드를 활용한 2×2 봉다발 부수로 유동 해석)

  • Lee, J.R.;Park, I.K.;Kim, J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.71-77
    • /
    • 2016
  • The CUPID code is a transient, three-dimensional, two-fluid, thermal-hydraulic code designed for a component-scale analysis of nuclear reactor components. The primary objective of this study is to assess the applicability of CUPID to single-phase turbulent flow analyses of $2{\times}2$ rod bundle subchannel. The bulk velocity at the inlet varies from 1.0 m/s up to 2.0 m/s which is equivalent to the fully turbulent flow with the range of Re=12,500 to 25,000. Adiabatic single-phase flow is assumed. The velocity profile at the exit region is quantitatively compared with both experimental measurement and commercial CFD tool. Three different boundary conditions are simulated and quantitatively compared each other. The calculation results of CUPID code shows a good agreement with the experimental data. It is concluded that the CUPID code has capability to reproduce the turbulent flow behavior for the $2{\times}2$ rod bundle geometry.

Mode analysis and low-order dynamic modelling of the three-dimensional turbulent flow filed around a building

  • Lei Zhou;Bingchao Zhang;K.T. Tseb
    • Wind and Structures
    • /
    • v.38 no.5
    • /
    • pp.381-398
    • /
    • 2024
  • This study presents a mode analysis of 3D turbulent velocity data around a square-section building model to identify the dynamic system for Kármán-type vortex shedding. Proper orthogonal decomposition (POD) was first performed to extract the significant 3D modes. Magnitude-squared coherence was then applied to detect the phase consistency between the modes, which were roughly divided into three groups. Group 1 (modes 1-4) depicted the main vortex shedding on the wake of the building, with mode 2 being controlled by the inflow fluctuation. Group 2 exhibited complex wake vortexes and single-sided vortex phenomena, while Group 3 exhibited more complicated phenomena, including flow separation. Subsequently, a third-order polynomial regression model was used to fit the dynamics system of modes 1, 3, and 4, which revealed average trend of the state trajectory. The two limit cycles of the regression model depicted the two rotation directions of Kármán-type vortex. Furthermore, two characteristic periods were identified from the trajectory generated by the regression model, which indicates fast and slow motions of the wake vortex. This study provides valuable insights into 3D mode morphology and dynamics of Kármán-type vortex shedding that helps to improve design and efficiency of structures in turbulent flow.

Thermohydraulic Characteristics of Two-Phase Flow in a Submerged Gas Injection System (잠겨진 가스분사장치에서의 2상유동의 열수력학적 특성)

  • Choi, Choeng Ryul;Kim, Chang Nyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1327-1339
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas Injection system. Effects of both the gas flow rate and bubble size were investigated. In addition, heat transfer characteristic and effects of heat transfer were investigated when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for the formulation of both the continuous and the dispersed phases. The turbulence in the liquid phase was modeled by the use of the standard $k-{\varepsilon}$ turbulence model. The interphase friction and heat transfer coefficient were calculated by means of correlations available in the literature. The turbulent dispersion of the phases was modeled by introducing a "dispersion Prandtl number". The plume region and the axial velocities are increased with increases in the gas flow rate and with decreases in the bubble diameter. The turbulent flow field grows stronger with the increases in the gas flow rate and with the decreases in the bubble diameter. In case that the heat transfer between the liquid and the gas is considered, the axial and the radial velocities are decreased in comparison with the case that there is no temperature difference between the liquid and the gas when the temperature of the injected gas is higher than the mean liquid temperature. The results in the present research are of interest in the design and the operation of a wide variety of material and chemical processes.

Analysis of two phase thrbulent flow in pipe with suspension of solid particles (고체분말이 부상된 이상난류 관유동의 해석)

  • ;;Chung, Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.3
    • /
    • pp.159-169
    • /
    • 1981
  • The mixing length theory is extended to close the momentum queations for two-phase turbulent flow at a first-order closure level. It is assumed that the mass fraction of the particles is of the order of unity, that the particle size is so small that the particles are fully suspended is the primary fluid, and that the relaxation time scale of the particles is of the same order as the time scale of the energy containing eddies so that the suspended particles are responsive to the fluctuating turbulent field. The bulk motion of the particles is treated as a secondary fluid with its own coefficient of momentum transport. The proposed closure is uniformly destributed acress the pipe section. Predicted velocity profiles and the friction factors are in good agreement with avaiable experimental data.

Study on Two Phase Flow of Two Jets Existing Velocity Difference (속도차가 존재하는 두 분류의 2상유동에 관한 연구)

  • 양희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.515-521
    • /
    • 1998
  • In this study the mixing process of two-phase flow which makes two jets existing vlocity difference are analyzed. The primary jet is jetted on the condition of the state mixed pulverized solid pariticle with air and the velocity in the secondary jet is changed into three kinds velocities(0.60, 75m/s) The velocity vector field concentration field and turbulent properties of solid particles are measured by using 3-Dimensional Particles Dynamics Analyzer. As the velocity of secondary jet increases the solid particle recirculation zone becomes larger. Also solid particle concentration gets dense due to velocity decrement of particles.

  • PDF